The Wavelet-Based Cluster Analysis for Temporal Gene Expression Data
A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from dif...
Gespeichert in:
Veröffentlicht in: | EURASIP journal on bioinformatics & systems biology 2007, Vol.2007 (1), p.1-7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | EURASIP journal on bioinformatics & systems biology |
container_volume | 2007 |
creator | Song, J Duan, K Ware, T Surette, M |
description | A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions. |
doi_str_mv | 10.1155/2007/39382 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3171337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35696711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-abfc8bff6909535dac65e4004f755083cef27dfdc3e63c050cf237ed9fe4f8c53</originalsourceid><addsrcrecordid>eNqFkUFLwzAUx4Mobk4vfoKePAh1SdPXtBdhbnMKAy8TjyFLX1yla2rSDvft7dwYeNopD_Ljx_-9PyG3jD4wBjCMKBVDnvE0OiN9lqQijBnw8-McQ49cef9FaZwAiEvSY0IwDmnWJ5PFCoMPtcESm_BJecyDcdn6Bl0wqlS59YUPjHXBAte1daoMZlhhMP2pHXpf2CqYqEZdkwujSo83h3dA3p-ni_FLOH-bvY5H81B3gZpQLY1Ol8YkGc2AQ650Ahh3qYwAoCnXaCKRm1xzTLimQLWJuMA8MxibVAMfkMe9t26Xa8w1Vk0XSdauWCu3lVYV8v9PVazkp91Izrp9uegEdweBs98t-kauC6-xLFWFtvWSQ5IlgrHTIAeRdWc_CXbddELYgfd7UDvrvUNzjM2o3NW4Q4X8q5H_Agjujjk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20067157</pqid></control><display><type>article</type><title>The Wavelet-Based Cluster Analysis for Temporal Gene Expression Data</title><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Song, J ; Duan, K ; Ware, T ; Surette, M</creator><creatorcontrib>Song, J ; Duan, K ; Ware, T ; Surette, M</creatorcontrib><description>A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.</description><identifier>ISSN: 1687-4145</identifier><identifier>EISSN: 1687-4153</identifier><identifier>DOI: 10.1155/2007/39382</identifier><identifier>PMID: 17713589</identifier><language>eng</language><publisher>Springer</publisher><ispartof>EURASIP journal on bioinformatics & systems biology, 2007, Vol.2007 (1), p.1-7</ispartof><rights>Copyright © 2007 J. Z. Song et al. 2007 J. Z. Song et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-abfc8bff6909535dac65e4004f755083cef27dfdc3e63c050cf237ed9fe4f8c53</citedby><cites>FETCH-LOGICAL-c415t-abfc8bff6909535dac65e4004f755083cef27dfdc3e63c050cf237ed9fe4f8c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171337/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171337/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Song, J</creatorcontrib><creatorcontrib>Duan, K</creatorcontrib><creatorcontrib>Ware, T</creatorcontrib><creatorcontrib>Surette, M</creatorcontrib><title>The Wavelet-Based Cluster Analysis for Temporal Gene Expression Data</title><title>EURASIP journal on bioinformatics & systems biology</title><description>A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.</description><issn>1687-4145</issn><issn>1687-4153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkUFLwzAUx4Mobk4vfoKePAh1SdPXtBdhbnMKAy8TjyFLX1yla2rSDvft7dwYeNopD_Ljx_-9PyG3jD4wBjCMKBVDnvE0OiN9lqQijBnw8-McQ49cef9FaZwAiEvSY0IwDmnWJ5PFCoMPtcESm_BJecyDcdn6Bl0wqlS59YUPjHXBAte1daoMZlhhMP2pHXpf2CqYqEZdkwujSo83h3dA3p-ni_FLOH-bvY5H81B3gZpQLY1Ol8YkGc2AQ650Ahh3qYwAoCnXaCKRm1xzTLimQLWJuMA8MxibVAMfkMe9t26Xa8w1Vk0XSdauWCu3lVYV8v9PVazkp91Izrp9uegEdweBs98t-kauC6-xLFWFtvWSQ5IlgrHTIAeRdWc_CXbddELYgfd7UDvrvUNzjM2o3NW4Q4X8q5H_Agjujjk</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Song, J</creator><creator>Duan, K</creator><creator>Ware, T</creator><creator>Surette, M</creator><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7U5</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>2007</creationdate><title>The Wavelet-Based Cluster Analysis for Temporal Gene Expression Data</title><author>Song, J ; Duan, K ; Ware, T ; Surette, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-abfc8bff6909535dac65e4004f755083cef27dfdc3e63c050cf237ed9fe4f8c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, J</creatorcontrib><creatorcontrib>Duan, K</creatorcontrib><creatorcontrib>Ware, T</creatorcontrib><creatorcontrib>Surette, M</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EURASIP journal on bioinformatics & systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, J</au><au>Duan, K</au><au>Ware, T</au><au>Surette, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Wavelet-Based Cluster Analysis for Temporal Gene Expression Data</atitle><jtitle>EURASIP journal on bioinformatics & systems biology</jtitle><date>2007</date><risdate>2007</risdate><volume>2007</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1687-4145</issn><eissn>1687-4153</eissn><abstract>A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.</abstract><pub>Springer</pub><pmid>17713589</pmid><doi>10.1155/2007/39382</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4145 |
ispartof | EURASIP journal on bioinformatics & systems biology, 2007, Vol.2007 (1), p.1-7 |
issn | 1687-4145 1687-4153 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3171337 |
source | PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | The Wavelet-Based Cluster Analysis for Temporal Gene Expression Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Wavelet-Based%20Cluster%20Analysis%20for%20Temporal%20Gene%20Expression%20Data&rft.jtitle=EURASIP%20journal%20on%20bioinformatics%20&%20systems%20biology&rft.au=Song,%20J&rft.date=2007&rft.volume=2007&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1687-4145&rft.eissn=1687-4153&rft_id=info:doi/10.1155/2007/39382&rft_dat=%3Cproquest_pubme%3E35696711%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20067157&rft_id=info:pmid/17713589&rfr_iscdi=true |