Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening

Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl‐CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section F, Structural biology and crystallization communications Structural biology and crystallization communications, 2011-09, Vol.67 (9), p.1060-1069
Hauptverfasser: Begley, Darren W., Davies, Douglas R., Hartley, Robert C., Hewitt, Stephen N., Rychel, Amanda L., Myler, Peter J., Van Voorhis, Wesley C., Staker, Bart L., Stewart, Lance J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1069
container_issue 9
container_start_page 1060
container_title Acta crystallographica. Section F, Structural biology and crystallization communications
container_volume 67
creator Begley, Darren W.
Davies, Douglas R.
Hartley, Robert C.
Hewitt, Stephen N.
Rychel, Amanda L.
Myler, Peter J.
Van Voorhis, Wesley C.
Staker, Bart L.
Stewart, Lance J.
description Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl‐CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD‐binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment‐based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side‐chain perturbations to key active‐site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small‐molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.
doi_str_mv 10.1107/S1744309111014436
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>888342004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5730-bf331313826d85cc85b7a264f40d0b2e8ea58ad05e0d3adc5bfb8ce3e631eae13</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEou3CD-CCIjj0FPB3nAvSamkLUilFLV8ny3Emuy5JXGwH2H-Po5RVgUPlg8fj5309nsmyJxi9wBiVLy9wyRhFFU4nnCJxL9ufUsWUu38r3ssOQrhCiNJKyIfZHsEVYojj_ezDuXe1Hda5cUPrfK-jdYPu8hB1hJC7Nl93Y9R-2xUrt8wb2Gwb79Yw6AB5vc1br9c9DDEPxgMMyelR9qDVXYDHN_si-3h8dLl6U5y-P3m7Wp4WhpcUFXVLKU5LEtFIbozkdamJYC1DDaoJSNBc6gZxQA3VjeF1W0sDFATFoAHTRfZq9r0e6x4ak4rwulPX3vapXOW0VX_fDHaj1u6HolhULLVikT2bDVyIVgVjI5hNasMAJiqMSInZBB3evOLd9xFCVL0NBrpOD-DGoCpBK0QE4neSUkrKCEIskc__Ia_c6FPXg8IlJUjIkkwUninjXQge2t3XMFLT-NV_40-ap7d7slP8mXcCqhn4aTvY3u2oll-PydEZZxwlbTFrbYjwa6fV_psSJS25-nx2ol5fkE_nl1_eKU5_A5atymY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732068724</pqid></control><display><type>article</type><title>Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening</title><source>MEDLINE</source><source>Wiley Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Begley, Darren W. ; Davies, Douglas R. ; Hartley, Robert C. ; Hewitt, Stephen N. ; Rychel, Amanda L. ; Myler, Peter J. ; Van Voorhis, Wesley C. ; Staker, Bart L. ; Stewart, Lance J.</creator><creatorcontrib>Begley, Darren W. ; Davies, Douglas R. ; Hartley, Robert C. ; Hewitt, Stephen N. ; Rychel, Amanda L. ; Myler, Peter J. ; Van Voorhis, Wesley C. ; Staker, Bart L. ; Stewart, Lance J. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl‐CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD‐binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment‐based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side‐chain perturbations to key active‐site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small‐molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.</description><identifier>ISSN: 1744-3091</identifier><identifier>EISSN: 1744-3091</identifier><identifier>EISSN: 2053-230X</identifier><identifier>DOI: 10.1107/S1744309111014436</identifier><identifier>PMID: 21904051</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>60 APPLIED LIFE SCIENCES ; ADENINES ; Apoenzymes - chemistry ; Backbone ; BASIC BIOLOGICAL SCIENCES ; Binding ; Burkholderia pseudomallei ; Burkholderia pseudomallei - enzymology ; Catalytic Domain ; crotonyl-CoA ; Crystallography, X-Ray ; DEFECTS ; DISEASES ; Disorders ; ENZYMES ; flavin adenine dinucleotide ; flavoproteins ; fragment screening ; Fragmentation ; glutaric acidemia ; glutaryl-CoA ; glutaryl-CoA dehydrogenase ; Glutaryl-CoA Dehydrogenase - chemistry ; Human ; Humans ; INSTABILITY ; ISOALLOXAZINES ; Models, Molecular ; OXIDOREDUCTASES ; pantothenate ; Phylogeny ; PROBES ; Protein Structure, Quaternary ; PROTEINS ; RESIDUES ; SSGCID ; Structural Communications ; Structural Homology, Protein</subject><ispartof>Acta crystallographica. Section F, Structural biology and crystallization communications, 2011-09, Vol.67 (9), p.1060-1069</ispartof><rights>Begley et al. 2011</rights><rights>Begley et al. 2011</rights><rights>Begley et al. 2011 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5730-bf331313826d85cc85b7a264f40d0b2e8ea58ad05e0d3adc5bfb8ce3e631eae13</citedby><cites>FETCH-LOGICAL-c5730-bf331313826d85cc85b7a264f40d0b2e8ea58ad05e0d3adc5bfb8ce3e631eae13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169403/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169403/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,27924,27925,45574,45575,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21904051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1027143$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Begley, Darren W.</creatorcontrib><creatorcontrib>Davies, Douglas R.</creatorcontrib><creatorcontrib>Hartley, Robert C.</creatorcontrib><creatorcontrib>Hewitt, Stephen N.</creatorcontrib><creatorcontrib>Rychel, Amanda L.</creatorcontrib><creatorcontrib>Myler, Peter J.</creatorcontrib><creatorcontrib>Van Voorhis, Wesley C.</creatorcontrib><creatorcontrib>Staker, Bart L.</creatorcontrib><creatorcontrib>Stewart, Lance J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening</title><title>Acta crystallographica. Section F, Structural biology and crystallization communications</title><addtitle>Acta Cryst. F</addtitle><description>Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl‐CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD‐binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment‐based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side‐chain perturbations to key active‐site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small‐molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ADENINES</subject><subject>Apoenzymes - chemistry</subject><subject>Backbone</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding</subject><subject>Burkholderia pseudomallei</subject><subject>Burkholderia pseudomallei - enzymology</subject><subject>Catalytic Domain</subject><subject>crotonyl-CoA</subject><subject>Crystallography, X-Ray</subject><subject>DEFECTS</subject><subject>DISEASES</subject><subject>Disorders</subject><subject>ENZYMES</subject><subject>flavin adenine dinucleotide</subject><subject>flavoproteins</subject><subject>fragment screening</subject><subject>Fragmentation</subject><subject>glutaric acidemia</subject><subject>glutaryl-CoA</subject><subject>glutaryl-CoA dehydrogenase</subject><subject>Glutaryl-CoA Dehydrogenase - chemistry</subject><subject>Human</subject><subject>Humans</subject><subject>INSTABILITY</subject><subject>ISOALLOXAZINES</subject><subject>Models, Molecular</subject><subject>OXIDOREDUCTASES</subject><subject>pantothenate</subject><subject>Phylogeny</subject><subject>PROBES</subject><subject>Protein Structure, Quaternary</subject><subject>PROTEINS</subject><subject>RESIDUES</subject><subject>SSGCID</subject><subject>Structural Communications</subject><subject>Structural Homology, Protein</subject><issn>1744-3091</issn><issn>1744-3091</issn><issn>2053-230X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEou3CD-CCIjj0FPB3nAvSamkLUilFLV8ny3Emuy5JXGwH2H-Po5RVgUPlg8fj5309nsmyJxi9wBiVLy9wyRhFFU4nnCJxL9ufUsWUu38r3ssOQrhCiNJKyIfZHsEVYojj_ezDuXe1Hda5cUPrfK-jdYPu8hB1hJC7Nl93Y9R-2xUrt8wb2Gwb79Yw6AB5vc1br9c9DDEPxgMMyelR9qDVXYDHN_si-3h8dLl6U5y-P3m7Wp4WhpcUFXVLKU5LEtFIbozkdamJYC1DDaoJSNBc6gZxQA3VjeF1W0sDFATFoAHTRfZq9r0e6x4ak4rwulPX3vapXOW0VX_fDHaj1u6HolhULLVikT2bDVyIVgVjI5hNasMAJiqMSInZBB3evOLd9xFCVL0NBrpOD-DGoCpBK0QE4neSUkrKCEIskc__Ia_c6FPXg8IlJUjIkkwUninjXQge2t3XMFLT-NV_40-ap7d7slP8mXcCqhn4aTvY3u2oll-PydEZZxwlbTFrbYjwa6fV_psSJS25-nx2ol5fkE_nl1_eKU5_A5atymY</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Begley, Darren W.</creator><creator>Davies, Douglas R.</creator><creator>Hartley, Robert C.</creator><creator>Hewitt, Stephen N.</creator><creator>Rychel, Amanda L.</creator><creator>Myler, Peter J.</creator><creator>Van Voorhis, Wesley C.</creator><creator>Staker, Bart L.</creator><creator>Stewart, Lance J.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>201109</creationdate><title>Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening</title><author>Begley, Darren W. ; Davies, Douglas R. ; Hartley, Robert C. ; Hewitt, Stephen N. ; Rychel, Amanda L. ; Myler, Peter J. ; Van Voorhis, Wesley C. ; Staker, Bart L. ; Stewart, Lance J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5730-bf331313826d85cc85b7a264f40d0b2e8ea58ad05e0d3adc5bfb8ce3e631eae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ADENINES</topic><topic>Apoenzymes - chemistry</topic><topic>Backbone</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding</topic><topic>Burkholderia pseudomallei</topic><topic>Burkholderia pseudomallei - enzymology</topic><topic>Catalytic Domain</topic><topic>crotonyl-CoA</topic><topic>Crystallography, X-Ray</topic><topic>DEFECTS</topic><topic>DISEASES</topic><topic>Disorders</topic><topic>ENZYMES</topic><topic>flavin adenine dinucleotide</topic><topic>flavoproteins</topic><topic>fragment screening</topic><topic>Fragmentation</topic><topic>glutaric acidemia</topic><topic>glutaryl-CoA</topic><topic>glutaryl-CoA dehydrogenase</topic><topic>Glutaryl-CoA Dehydrogenase - chemistry</topic><topic>Human</topic><topic>Humans</topic><topic>INSTABILITY</topic><topic>ISOALLOXAZINES</topic><topic>Models, Molecular</topic><topic>OXIDOREDUCTASES</topic><topic>pantothenate</topic><topic>Phylogeny</topic><topic>PROBES</topic><topic>Protein Structure, Quaternary</topic><topic>PROTEINS</topic><topic>RESIDUES</topic><topic>SSGCID</topic><topic>Structural Communications</topic><topic>Structural Homology, Protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Begley, Darren W.</creatorcontrib><creatorcontrib>Davies, Douglas R.</creatorcontrib><creatorcontrib>Hartley, Robert C.</creatorcontrib><creatorcontrib>Hewitt, Stephen N.</creatorcontrib><creatorcontrib>Rychel, Amanda L.</creatorcontrib><creatorcontrib>Myler, Peter J.</creatorcontrib><creatorcontrib>Van Voorhis, Wesley C.</creatorcontrib><creatorcontrib>Staker, Bart L.</creatorcontrib><creatorcontrib>Stewart, Lance J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section F, Structural biology and crystallization communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Begley, Darren W.</au><au>Davies, Douglas R.</au><au>Hartley, Robert C.</au><au>Hewitt, Stephen N.</au><au>Rychel, Amanda L.</au><au>Myler, Peter J.</au><au>Van Voorhis, Wesley C.</au><au>Staker, Bart L.</au><au>Stewart, Lance J.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening</atitle><jtitle>Acta crystallographica. Section F, Structural biology and crystallization communications</jtitle><addtitle>Acta Cryst. F</addtitle><date>2011-09</date><risdate>2011</risdate><volume>67</volume><issue>9</issue><spage>1060</spage><epage>1069</epage><pages>1060-1069</pages><issn>1744-3091</issn><eissn>1744-3091</eissn><eissn>2053-230X</eissn><abstract>Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl‐CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD‐binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment‐based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side‐chain perturbations to key active‐site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small‐molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>21904051</pmid><doi>10.1107/S1744309111014436</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-3091
ispartof Acta crystallographica. Section F, Structural biology and crystallization communications, 2011-09, Vol.67 (9), p.1060-1069
issn 1744-3091
1744-3091
2053-230X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169403
source MEDLINE; Wiley Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 60 APPLIED LIFE SCIENCES
ADENINES
Apoenzymes - chemistry
Backbone
BASIC BIOLOGICAL SCIENCES
Binding
Burkholderia pseudomallei
Burkholderia pseudomallei - enzymology
Catalytic Domain
crotonyl-CoA
Crystallography, X-Ray
DEFECTS
DISEASES
Disorders
ENZYMES
flavin adenine dinucleotide
flavoproteins
fragment screening
Fragmentation
glutaric acidemia
glutaryl-CoA
glutaryl-CoA dehydrogenase
Glutaryl-CoA Dehydrogenase - chemistry
Human
Humans
INSTABILITY
ISOALLOXAZINES
Models, Molecular
OXIDOREDUCTASES
pantothenate
Phylogeny
PROBES
Protein Structure, Quaternary
PROTEINS
RESIDUES
SSGCID
Structural Communications
Structural Homology, Protein
title Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20conformational%20states%20of%20glutaryl-CoA%20dehydrogenase%20by%20fragment%20screening&rft.jtitle=Acta%20crystallographica.%20Section%20F,%20Structural%20biology%20and%20crystallization%20communications&rft.au=Begley,%20Darren%20W.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2011-09&rft.volume=67&rft.issue=9&rft.spage=1060&rft.epage=1069&rft.pages=1060-1069&rft.issn=1744-3091&rft.eissn=1744-3091&rft_id=info:doi/10.1107/S1744309111014436&rft_dat=%3Cproquest_pubme%3E888342004%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732068724&rft_id=info:pmid/21904051&rfr_iscdi=true