Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening
Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl‐CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instabil...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section F, Structural biology and crystallization communications Structural biology and crystallization communications, 2011-09, Vol.67 (9), p.1060-1069 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1069 |
---|---|
container_issue | 9 |
container_start_page | 1060 |
container_title | Acta crystallographica. Section F, Structural biology and crystallization communications |
container_volume | 67 |
creator | Begley, Darren W. Davies, Douglas R. Hartley, Robert C. Hewitt, Stephen N. Rychel, Amanda L. Myler, Peter J. Van Voorhis, Wesley C. Staker, Bart L. Stewart, Lance J. |
description | Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl‐CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD‐binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment‐based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side‐chain perturbations to key active‐site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small‐molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals. |
doi_str_mv | 10.1107/S1744309111014436 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>888342004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5730-bf331313826d85cc85b7a264f40d0b2e8ea58ad05e0d3adc5bfb8ce3e631eae13</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEou3CD-CCIjj0FPB3nAvSamkLUilFLV8ny3Emuy5JXGwH2H-Po5RVgUPlg8fj5309nsmyJxi9wBiVLy9wyRhFFU4nnCJxL9ufUsWUu38r3ssOQrhCiNJKyIfZHsEVYojj_ezDuXe1Hda5cUPrfK-jdYPu8hB1hJC7Nl93Y9R-2xUrt8wb2Gwb79Yw6AB5vc1br9c9DDEPxgMMyelR9qDVXYDHN_si-3h8dLl6U5y-P3m7Wp4WhpcUFXVLKU5LEtFIbozkdamJYC1DDaoJSNBc6gZxQA3VjeF1W0sDFATFoAHTRfZq9r0e6x4ak4rwulPX3vapXOW0VX_fDHaj1u6HolhULLVikT2bDVyIVgVjI5hNasMAJiqMSInZBB3evOLd9xFCVL0NBrpOD-DGoCpBK0QE4neSUkrKCEIskc__Ia_c6FPXg8IlJUjIkkwUninjXQge2t3XMFLT-NV_40-ap7d7slP8mXcCqhn4aTvY3u2oll-PydEZZxwlbTFrbYjwa6fV_psSJS25-nx2ol5fkE_nl1_eKU5_A5atymY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732068724</pqid></control><display><type>article</type><title>Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening</title><source>MEDLINE</source><source>Wiley Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Begley, Darren W. ; Davies, Douglas R. ; Hartley, Robert C. ; Hewitt, Stephen N. ; Rychel, Amanda L. ; Myler, Peter J. ; Van Voorhis, Wesley C. ; Staker, Bart L. ; Stewart, Lance J.</creator><creatorcontrib>Begley, Darren W. ; Davies, Douglas R. ; Hartley, Robert C. ; Hewitt, Stephen N. ; Rychel, Amanda L. ; Myler, Peter J. ; Van Voorhis, Wesley C. ; Staker, Bart L. ; Stewart, Lance J. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl‐CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD‐binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment‐based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side‐chain perturbations to key active‐site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small‐molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.</description><identifier>ISSN: 1744-3091</identifier><identifier>EISSN: 1744-3091</identifier><identifier>EISSN: 2053-230X</identifier><identifier>DOI: 10.1107/S1744309111014436</identifier><identifier>PMID: 21904051</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>60 APPLIED LIFE SCIENCES ; ADENINES ; Apoenzymes - chemistry ; Backbone ; BASIC BIOLOGICAL SCIENCES ; Binding ; Burkholderia pseudomallei ; Burkholderia pseudomallei - enzymology ; Catalytic Domain ; crotonyl-CoA ; Crystallography, X-Ray ; DEFECTS ; DISEASES ; Disorders ; ENZYMES ; flavin adenine dinucleotide ; flavoproteins ; fragment screening ; Fragmentation ; glutaric acidemia ; glutaryl-CoA ; glutaryl-CoA dehydrogenase ; Glutaryl-CoA Dehydrogenase - chemistry ; Human ; Humans ; INSTABILITY ; ISOALLOXAZINES ; Models, Molecular ; OXIDOREDUCTASES ; pantothenate ; Phylogeny ; PROBES ; Protein Structure, Quaternary ; PROTEINS ; RESIDUES ; SSGCID ; Structural Communications ; Structural Homology, Protein</subject><ispartof>Acta crystallographica. Section F, Structural biology and crystallization communications, 2011-09, Vol.67 (9), p.1060-1069</ispartof><rights>Begley et al. 2011</rights><rights>Begley et al. 2011</rights><rights>Begley et al. 2011 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5730-bf331313826d85cc85b7a264f40d0b2e8ea58ad05e0d3adc5bfb8ce3e631eae13</citedby><cites>FETCH-LOGICAL-c5730-bf331313826d85cc85b7a264f40d0b2e8ea58ad05e0d3adc5bfb8ce3e631eae13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169403/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169403/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,27924,27925,45574,45575,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21904051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1027143$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Begley, Darren W.</creatorcontrib><creatorcontrib>Davies, Douglas R.</creatorcontrib><creatorcontrib>Hartley, Robert C.</creatorcontrib><creatorcontrib>Hewitt, Stephen N.</creatorcontrib><creatorcontrib>Rychel, Amanda L.</creatorcontrib><creatorcontrib>Myler, Peter J.</creatorcontrib><creatorcontrib>Van Voorhis, Wesley C.</creatorcontrib><creatorcontrib>Staker, Bart L.</creatorcontrib><creatorcontrib>Stewart, Lance J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening</title><title>Acta crystallographica. Section F, Structural biology and crystallization communications</title><addtitle>Acta Cryst. F</addtitle><description>Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl‐CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD‐binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment‐based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side‐chain perturbations to key active‐site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small‐molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ADENINES</subject><subject>Apoenzymes - chemistry</subject><subject>Backbone</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding</subject><subject>Burkholderia pseudomallei</subject><subject>Burkholderia pseudomallei - enzymology</subject><subject>Catalytic Domain</subject><subject>crotonyl-CoA</subject><subject>Crystallography, X-Ray</subject><subject>DEFECTS</subject><subject>DISEASES</subject><subject>Disorders</subject><subject>ENZYMES</subject><subject>flavin adenine dinucleotide</subject><subject>flavoproteins</subject><subject>fragment screening</subject><subject>Fragmentation</subject><subject>glutaric acidemia</subject><subject>glutaryl-CoA</subject><subject>glutaryl-CoA dehydrogenase</subject><subject>Glutaryl-CoA Dehydrogenase - chemistry</subject><subject>Human</subject><subject>Humans</subject><subject>INSTABILITY</subject><subject>ISOALLOXAZINES</subject><subject>Models, Molecular</subject><subject>OXIDOREDUCTASES</subject><subject>pantothenate</subject><subject>Phylogeny</subject><subject>PROBES</subject><subject>Protein Structure, Quaternary</subject><subject>PROTEINS</subject><subject>RESIDUES</subject><subject>SSGCID</subject><subject>Structural Communications</subject><subject>Structural Homology, Protein</subject><issn>1744-3091</issn><issn>1744-3091</issn><issn>2053-230X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEou3CD-CCIjj0FPB3nAvSamkLUilFLV8ny3Emuy5JXGwH2H-Po5RVgUPlg8fj5309nsmyJxi9wBiVLy9wyRhFFU4nnCJxL9ufUsWUu38r3ssOQrhCiNJKyIfZHsEVYojj_ezDuXe1Hda5cUPrfK-jdYPu8hB1hJC7Nl93Y9R-2xUrt8wb2Gwb79Yw6AB5vc1br9c9DDEPxgMMyelR9qDVXYDHN_si-3h8dLl6U5y-P3m7Wp4WhpcUFXVLKU5LEtFIbozkdamJYC1DDaoJSNBc6gZxQA3VjeF1W0sDFATFoAHTRfZq9r0e6x4ak4rwulPX3vapXOW0VX_fDHaj1u6HolhULLVikT2bDVyIVgVjI5hNasMAJiqMSInZBB3evOLd9xFCVL0NBrpOD-DGoCpBK0QE4neSUkrKCEIskc__Ia_c6FPXg8IlJUjIkkwUninjXQge2t3XMFLT-NV_40-ap7d7slP8mXcCqhn4aTvY3u2oll-PydEZZxwlbTFrbYjwa6fV_psSJS25-nx2ol5fkE_nl1_eKU5_A5atymY</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Begley, Darren W.</creator><creator>Davies, Douglas R.</creator><creator>Hartley, Robert C.</creator><creator>Hewitt, Stephen N.</creator><creator>Rychel, Amanda L.</creator><creator>Myler, Peter J.</creator><creator>Van Voorhis, Wesley C.</creator><creator>Staker, Bart L.</creator><creator>Stewart, Lance J.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>201109</creationdate><title>Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening</title><author>Begley, Darren W. ; Davies, Douglas R. ; Hartley, Robert C. ; Hewitt, Stephen N. ; Rychel, Amanda L. ; Myler, Peter J. ; Van Voorhis, Wesley C. ; Staker, Bart L. ; Stewart, Lance J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5730-bf331313826d85cc85b7a264f40d0b2e8ea58ad05e0d3adc5bfb8ce3e631eae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ADENINES</topic><topic>Apoenzymes - chemistry</topic><topic>Backbone</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding</topic><topic>Burkholderia pseudomallei</topic><topic>Burkholderia pseudomallei - enzymology</topic><topic>Catalytic Domain</topic><topic>crotonyl-CoA</topic><topic>Crystallography, X-Ray</topic><topic>DEFECTS</topic><topic>DISEASES</topic><topic>Disorders</topic><topic>ENZYMES</topic><topic>flavin adenine dinucleotide</topic><topic>flavoproteins</topic><topic>fragment screening</topic><topic>Fragmentation</topic><topic>glutaric acidemia</topic><topic>glutaryl-CoA</topic><topic>glutaryl-CoA dehydrogenase</topic><topic>Glutaryl-CoA Dehydrogenase - chemistry</topic><topic>Human</topic><topic>Humans</topic><topic>INSTABILITY</topic><topic>ISOALLOXAZINES</topic><topic>Models, Molecular</topic><topic>OXIDOREDUCTASES</topic><topic>pantothenate</topic><topic>Phylogeny</topic><topic>PROBES</topic><topic>Protein Structure, Quaternary</topic><topic>PROTEINS</topic><topic>RESIDUES</topic><topic>SSGCID</topic><topic>Structural Communications</topic><topic>Structural Homology, Protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Begley, Darren W.</creatorcontrib><creatorcontrib>Davies, Douglas R.</creatorcontrib><creatorcontrib>Hartley, Robert C.</creatorcontrib><creatorcontrib>Hewitt, Stephen N.</creatorcontrib><creatorcontrib>Rychel, Amanda L.</creatorcontrib><creatorcontrib>Myler, Peter J.</creatorcontrib><creatorcontrib>Van Voorhis, Wesley C.</creatorcontrib><creatorcontrib>Staker, Bart L.</creatorcontrib><creatorcontrib>Stewart, Lance J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section F, Structural biology and crystallization communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Begley, Darren W.</au><au>Davies, Douglas R.</au><au>Hartley, Robert C.</au><au>Hewitt, Stephen N.</au><au>Rychel, Amanda L.</au><au>Myler, Peter J.</au><au>Van Voorhis, Wesley C.</au><au>Staker, Bart L.</au><au>Stewart, Lance J.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening</atitle><jtitle>Acta crystallographica. Section F, Structural biology and crystallization communications</jtitle><addtitle>Acta Cryst. F</addtitle><date>2011-09</date><risdate>2011</risdate><volume>67</volume><issue>9</issue><spage>1060</spage><epage>1069</epage><pages>1060-1069</pages><issn>1744-3091</issn><eissn>1744-3091</eissn><eissn>2053-230X</eissn><abstract>Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl‐CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD‐binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment‐based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side‐chain perturbations to key active‐site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small‐molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>21904051</pmid><doi>10.1107/S1744309111014436</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-3091 |
ispartof | Acta crystallographica. Section F, Structural biology and crystallization communications, 2011-09, Vol.67 (9), p.1060-1069 |
issn | 1744-3091 1744-3091 2053-230X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169403 |
source | MEDLINE; Wiley Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 60 APPLIED LIFE SCIENCES ADENINES Apoenzymes - chemistry Backbone BASIC BIOLOGICAL SCIENCES Binding Burkholderia pseudomallei Burkholderia pseudomallei - enzymology Catalytic Domain crotonyl-CoA Crystallography, X-Ray DEFECTS DISEASES Disorders ENZYMES flavin adenine dinucleotide flavoproteins fragment screening Fragmentation glutaric acidemia glutaryl-CoA glutaryl-CoA dehydrogenase Glutaryl-CoA Dehydrogenase - chemistry Human Humans INSTABILITY ISOALLOXAZINES Models, Molecular OXIDOREDUCTASES pantothenate Phylogeny PROBES Protein Structure, Quaternary PROTEINS RESIDUES SSGCID Structural Communications Structural Homology, Protein |
title | Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20conformational%20states%20of%20glutaryl-CoA%20dehydrogenase%20by%20fragment%20screening&rft.jtitle=Acta%20crystallographica.%20Section%20F,%20Structural%20biology%20and%20crystallization%20communications&rft.au=Begley,%20Darren%20W.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2011-09&rft.volume=67&rft.issue=9&rft.spage=1060&rft.epage=1069&rft.pages=1060-1069&rft.issn=1744-3091&rft.eissn=1744-3091&rft_id=info:doi/10.1107/S1744309111014436&rft_dat=%3Cproquest_pubme%3E888342004%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732068724&rft_id=info:pmid/21904051&rfr_iscdi=true |