Permafrost carbon-climate feedbacks accelerate global warming

Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-09, Vol.108 (36), p.14769-14774
Hauptverfasser: Koven, Charles D, Ringeval, Bruno, Friedlingstein, Pierre, Ciais, Philippe, Cadule, Patricia, Khvorostyanov, Dmitry, Krinner, Gerhard, Tarnocai, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14774
container_issue 36
container_start_page 14769
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Koven, Charles D
Ringeval, Bruno
Friedlingstein, Pierre
Ciais, Philippe
Cadule, Patricia
Khvorostyanov, Dmitry
Krinner, Gerhard
Tarnocai, Charles
description Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent.
doi_str_mv 10.1073/pnas.1103910108
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27979376</jstor_id><sourcerecordid>27979376</sourcerecordid><originalsourceid>FETCH-LOGICAL-a706t-93188f2e9dba481e072760d1b04b5c6cd464f1207bff23d398744064603131ea3</originalsourceid><addsrcrecordid>eNp9ks1v1DAQxSMEokvhzAmIuBQhpZ2xHX8cQKoqoEgrgQQ9W47j7GbJxls7KeK_r6Msu8CBkyXPb56en1-WPUc4RxD0YtebeI4IVCEgyAfZAkFhwZmCh9kCgIhCMsJOsicxbgBAlRIeZycEZUlKQRfZu68ubE0TfBxya0Ll-8J27dYMLm-cqytjf8TcWOs6F6bLVecr0-U_Tdi2_epp9qgxXXTP9udpdvPxw_er62L55dPnq8tlYQTwoVAUpWyIU0mPSXQgiOBQYwWsKi23NeOsQQKiahpCa6qkYAw440CRojP0NHs_6-7Gautq6_ohmE7vQnIafmlvWv33pG_XeuXvNEWukKgk8HoWSO9sdbTt4Oza-r53dtAIJZKyTNDbGVr_o319udRtH0cNyZQApu4wwWd7S8Hfji4OetvGFFNneufHqBUQSiURE_nmvyRRshQlkyUebR7QjR9Dn6LVUirCJZMkQRczZNOvxeCag1cEPbVCT63Qx1akjZd_xnfgf9cgAfkemDaPclJTrpEJPiX4YkY2cfDhKCGUUFTwNH81zxvjtVmFNuqbbwSQpdbJ1ElK7wF7os2U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889268482</pqid></control><display><type>article</type><title>Permafrost carbon-climate feedbacks accelerate global warming</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Koven, Charles D ; Ringeval, Bruno ; Friedlingstein, Pierre ; Ciais, Philippe ; Cadule, Patricia ; Khvorostyanov, Dmitry ; Krinner, Gerhard ; Tarnocai, Charles</creator><creatorcontrib>Koven, Charles D ; Ringeval, Bruno ; Friedlingstein, Pierre ; Ciais, Philippe ; Cadule, Patricia ; Khvorostyanov, Dmitry ; Krinner, Gerhard ; Tarnocai, Charles ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1103910108</identifier><identifier>PMID: 21852573</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Carbon ; Carbon dioxide ; carbon sinks ; Climate change ; Climate models ; Cold Climate ; Earth Sciences ; Ecosystem models ; ecosystems ; Emissions ; ENVIRONMENTAL SCIENCES ; Geomorphology ; GEOSCIENCES ; Global Warming ; GREENHOUSE EFFECT ; inventories ; LAWRENCE BERKELEY LABORATORY ; Methane ; methane production ; mixing ; Models, Theoretical ; PERMAFROST ; Physical Sciences ; Sciences of the Universe ; Soil heating ; Soils ; Terrestrial ecosystems ; Wetland soils ; Wetlands</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (36), p.14769-14774</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 6, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a706t-93188f2e9dba481e072760d1b04b5c6cd464f1207bff23d398744064603131ea3</citedby><cites>FETCH-LOGICAL-a706t-93188f2e9dba481e072760d1b04b5c6cd464f1207bff23d398744064603131ea3</cites><orcidid>0000-0003-3309-4739 ; 0000-0001-8560-4943 ; 0000-0001-8405-1304 ; 0000-0002-2959-5920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27979376$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27979376$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21852573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-00647049$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1051255$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Koven, Charles D</creatorcontrib><creatorcontrib>Ringeval, Bruno</creatorcontrib><creatorcontrib>Friedlingstein, Pierre</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Cadule, Patricia</creatorcontrib><creatorcontrib>Khvorostyanov, Dmitry</creatorcontrib><creatorcontrib>Krinner, Gerhard</creatorcontrib><creatorcontrib>Tarnocai, Charles</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Permafrost carbon-climate feedbacks accelerate global warming</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent.</description><subject>Biological Sciences</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>carbon sinks</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Cold Climate</subject><subject>Earth Sciences</subject><subject>Ecosystem models</subject><subject>ecosystems</subject><subject>Emissions</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Geomorphology</subject><subject>GEOSCIENCES</subject><subject>Global Warming</subject><subject>GREENHOUSE EFFECT</subject><subject>inventories</subject><subject>LAWRENCE BERKELEY LABORATORY</subject><subject>Methane</subject><subject>methane production</subject><subject>mixing</subject><subject>Models, Theoretical</subject><subject>PERMAFROST</subject><subject>Physical Sciences</subject><subject>Sciences of the Universe</subject><subject>Soil heating</subject><subject>Soils</subject><subject>Terrestrial ecosystems</subject><subject>Wetland soils</subject><subject>Wetlands</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1v1DAQxSMEokvhzAmIuBQhpZ2xHX8cQKoqoEgrgQQ9W47j7GbJxls7KeK_r6Msu8CBkyXPb56en1-WPUc4RxD0YtebeI4IVCEgyAfZAkFhwZmCh9kCgIhCMsJOsicxbgBAlRIeZycEZUlKQRfZu68ubE0TfBxya0Ll-8J27dYMLm-cqytjf8TcWOs6F6bLVecr0-U_Tdi2_epp9qgxXXTP9udpdvPxw_er62L55dPnq8tlYQTwoVAUpWyIU0mPSXQgiOBQYwWsKi23NeOsQQKiahpCa6qkYAw440CRojP0NHs_6-7Gautq6_ohmE7vQnIafmlvWv33pG_XeuXvNEWukKgk8HoWSO9sdbTt4Oza-r53dtAIJZKyTNDbGVr_o319udRtH0cNyZQApu4wwWd7S8Hfji4OetvGFFNneufHqBUQSiURE_nmvyRRshQlkyUebR7QjR9Dn6LVUirCJZMkQRczZNOvxeCag1cEPbVCT63Qx1akjZd_xnfgf9cgAfkemDaPclJTrpEJPiX4YkY2cfDhKCGUUFTwNH81zxvjtVmFNuqbbwSQpdbJ1ElK7wF7os2U</recordid><startdate>20110906</startdate><enddate>20110906</enddate><creator>Koven, Charles D</creator><creator>Ringeval, Bruno</creator><creator>Friedlingstein, Pierre</creator><creator>Ciais, Philippe</creator><creator>Cadule, Patricia</creator><creator>Khvorostyanov, Dmitry</creator><creator>Krinner, Gerhard</creator><creator>Tarnocai, Charles</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>KL.</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3309-4739</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0001-8405-1304</orcidid><orcidid>https://orcid.org/0000-0002-2959-5920</orcidid></search><sort><creationdate>20110906</creationdate><title>Permafrost carbon-climate feedbacks accelerate global warming</title><author>Koven, Charles D ; Ringeval, Bruno ; Friedlingstein, Pierre ; Ciais, Philippe ; Cadule, Patricia ; Khvorostyanov, Dmitry ; Krinner, Gerhard ; Tarnocai, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a706t-93188f2e9dba481e072760d1b04b5c6cd464f1207bff23d398744064603131ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological Sciences</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>carbon sinks</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Cold Climate</topic><topic>Earth Sciences</topic><topic>Ecosystem models</topic><topic>ecosystems</topic><topic>Emissions</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Geomorphology</topic><topic>GEOSCIENCES</topic><topic>Global Warming</topic><topic>GREENHOUSE EFFECT</topic><topic>inventories</topic><topic>LAWRENCE BERKELEY LABORATORY</topic><topic>Methane</topic><topic>methane production</topic><topic>mixing</topic><topic>Models, Theoretical</topic><topic>PERMAFROST</topic><topic>Physical Sciences</topic><topic>Sciences of the Universe</topic><topic>Soil heating</topic><topic>Soils</topic><topic>Terrestrial ecosystems</topic><topic>Wetland soils</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koven, Charles D</creatorcontrib><creatorcontrib>Ringeval, Bruno</creatorcontrib><creatorcontrib>Friedlingstein, Pierre</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Cadule, Patricia</creatorcontrib><creatorcontrib>Khvorostyanov, Dmitry</creatorcontrib><creatorcontrib>Krinner, Gerhard</creatorcontrib><creatorcontrib>Tarnocai, Charles</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koven, Charles D</au><au>Ringeval, Bruno</au><au>Friedlingstein, Pierre</au><au>Ciais, Philippe</au><au>Cadule, Patricia</au><au>Khvorostyanov, Dmitry</au><au>Krinner, Gerhard</au><au>Tarnocai, Charles</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permafrost carbon-climate feedbacks accelerate global warming</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-09-06</date><risdate>2011</risdate><volume>108</volume><issue>36</issue><spage>14769</spage><epage>14774</epage><pages>14769-14774</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21852573</pmid><doi>10.1073/pnas.1103910108</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3309-4739</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0001-8405-1304</orcidid><orcidid>https://orcid.org/0000-0002-2959-5920</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (36), p.14769-14774
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169129
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Carbon
Carbon dioxide
carbon sinks
Climate change
Climate models
Cold Climate
Earth Sciences
Ecosystem models
ecosystems
Emissions
ENVIRONMENTAL SCIENCES
Geomorphology
GEOSCIENCES
Global Warming
GREENHOUSE EFFECT
inventories
LAWRENCE BERKELEY LABORATORY
Methane
methane production
mixing
Models, Theoretical
PERMAFROST
Physical Sciences
Sciences of the Universe
Soil heating
Soils
Terrestrial ecosystems
Wetland soils
Wetlands
title Permafrost carbon-climate feedbacks accelerate global warming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permafrost%20carbon-climate%20feedbacks%20accelerate%20global%20warming&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Koven,%20Charles%20D&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2011-09-06&rft.volume=108&rft.issue=36&rft.spage=14769&rft.epage=14774&rft.pages=14769-14774&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1103910108&rft_dat=%3Cjstor_pubme%3E27979376%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889268482&rft_id=info:pmid/21852573&rft_jstor_id=27979376&rfr_iscdi=true