Permafrost carbon-climate feedbacks accelerate global warming
Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil l...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-09, Vol.108 (36), p.14769-14774 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14774 |
---|---|
container_issue | 36 |
container_start_page | 14769 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Koven, Charles D Ringeval, Bruno Friedlingstein, Pierre Ciais, Philippe Cadule, Patricia Khvorostyanov, Dmitry Krinner, Gerhard Tarnocai, Charles |
description | Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent. |
doi_str_mv | 10.1073/pnas.1103910108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27979376</jstor_id><sourcerecordid>27979376</sourcerecordid><originalsourceid>FETCH-LOGICAL-a706t-93188f2e9dba481e072760d1b04b5c6cd464f1207bff23d398744064603131ea3</originalsourceid><addsrcrecordid>eNp9ks1v1DAQxSMEokvhzAmIuBQhpZ2xHX8cQKoqoEgrgQQ9W47j7GbJxls7KeK_r6Msu8CBkyXPb56en1-WPUc4RxD0YtebeI4IVCEgyAfZAkFhwZmCh9kCgIhCMsJOsicxbgBAlRIeZycEZUlKQRfZu68ubE0TfBxya0Ll-8J27dYMLm-cqytjf8TcWOs6F6bLVecr0-U_Tdi2_epp9qgxXXTP9udpdvPxw_er62L55dPnq8tlYQTwoVAUpWyIU0mPSXQgiOBQYwWsKi23NeOsQQKiahpCa6qkYAw440CRojP0NHs_6-7Gautq6_ohmE7vQnIafmlvWv33pG_XeuXvNEWukKgk8HoWSO9sdbTt4Oza-r53dtAIJZKyTNDbGVr_o319udRtH0cNyZQApu4wwWd7S8Hfji4OetvGFFNneufHqBUQSiURE_nmvyRRshQlkyUebR7QjR9Dn6LVUirCJZMkQRczZNOvxeCag1cEPbVCT63Qx1akjZd_xnfgf9cgAfkemDaPclJTrpEJPiX4YkY2cfDhKCGUUFTwNH81zxvjtVmFNuqbbwSQpdbJ1ElK7wF7os2U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889268482</pqid></control><display><type>article</type><title>Permafrost carbon-climate feedbacks accelerate global warming</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Koven, Charles D ; Ringeval, Bruno ; Friedlingstein, Pierre ; Ciais, Philippe ; Cadule, Patricia ; Khvorostyanov, Dmitry ; Krinner, Gerhard ; Tarnocai, Charles</creator><creatorcontrib>Koven, Charles D ; Ringeval, Bruno ; Friedlingstein, Pierre ; Ciais, Philippe ; Cadule, Patricia ; Khvorostyanov, Dmitry ; Krinner, Gerhard ; Tarnocai, Charles ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1103910108</identifier><identifier>PMID: 21852573</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Carbon ; Carbon dioxide ; carbon sinks ; Climate change ; Climate models ; Cold Climate ; Earth Sciences ; Ecosystem models ; ecosystems ; Emissions ; ENVIRONMENTAL SCIENCES ; Geomorphology ; GEOSCIENCES ; Global Warming ; GREENHOUSE EFFECT ; inventories ; LAWRENCE BERKELEY LABORATORY ; Methane ; methane production ; mixing ; Models, Theoretical ; PERMAFROST ; Physical Sciences ; Sciences of the Universe ; Soil heating ; Soils ; Terrestrial ecosystems ; Wetland soils ; Wetlands</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (36), p.14769-14774</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 6, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a706t-93188f2e9dba481e072760d1b04b5c6cd464f1207bff23d398744064603131ea3</citedby><cites>FETCH-LOGICAL-a706t-93188f2e9dba481e072760d1b04b5c6cd464f1207bff23d398744064603131ea3</cites><orcidid>0000-0003-3309-4739 ; 0000-0001-8560-4943 ; 0000-0001-8405-1304 ; 0000-0002-2959-5920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27979376$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27979376$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21852573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-00647049$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1051255$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Koven, Charles D</creatorcontrib><creatorcontrib>Ringeval, Bruno</creatorcontrib><creatorcontrib>Friedlingstein, Pierre</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Cadule, Patricia</creatorcontrib><creatorcontrib>Khvorostyanov, Dmitry</creatorcontrib><creatorcontrib>Krinner, Gerhard</creatorcontrib><creatorcontrib>Tarnocai, Charles</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Permafrost carbon-climate feedbacks accelerate global warming</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent.</description><subject>Biological Sciences</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>carbon sinks</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Cold Climate</subject><subject>Earth Sciences</subject><subject>Ecosystem models</subject><subject>ecosystems</subject><subject>Emissions</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Geomorphology</subject><subject>GEOSCIENCES</subject><subject>Global Warming</subject><subject>GREENHOUSE EFFECT</subject><subject>inventories</subject><subject>LAWRENCE BERKELEY LABORATORY</subject><subject>Methane</subject><subject>methane production</subject><subject>mixing</subject><subject>Models, Theoretical</subject><subject>PERMAFROST</subject><subject>Physical Sciences</subject><subject>Sciences of the Universe</subject><subject>Soil heating</subject><subject>Soils</subject><subject>Terrestrial ecosystems</subject><subject>Wetland soils</subject><subject>Wetlands</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1v1DAQxSMEokvhzAmIuBQhpZ2xHX8cQKoqoEgrgQQ9W47j7GbJxls7KeK_r6Msu8CBkyXPb56en1-WPUc4RxD0YtebeI4IVCEgyAfZAkFhwZmCh9kCgIhCMsJOsicxbgBAlRIeZycEZUlKQRfZu68ubE0TfBxya0Ll-8J27dYMLm-cqytjf8TcWOs6F6bLVecr0-U_Tdi2_epp9qgxXXTP9udpdvPxw_er62L55dPnq8tlYQTwoVAUpWyIU0mPSXQgiOBQYwWsKi23NeOsQQKiahpCa6qkYAw440CRojP0NHs_6-7Gautq6_ohmE7vQnIafmlvWv33pG_XeuXvNEWukKgk8HoWSO9sdbTt4Oza-r53dtAIJZKyTNDbGVr_o319udRtH0cNyZQApu4wwWd7S8Hfji4OetvGFFNneufHqBUQSiURE_nmvyRRshQlkyUebR7QjR9Dn6LVUirCJZMkQRczZNOvxeCag1cEPbVCT63Qx1akjZd_xnfgf9cgAfkemDaPclJTrpEJPiX4YkY2cfDhKCGUUFTwNH81zxvjtVmFNuqbbwSQpdbJ1ElK7wF7os2U</recordid><startdate>20110906</startdate><enddate>20110906</enddate><creator>Koven, Charles D</creator><creator>Ringeval, Bruno</creator><creator>Friedlingstein, Pierre</creator><creator>Ciais, Philippe</creator><creator>Cadule, Patricia</creator><creator>Khvorostyanov, Dmitry</creator><creator>Krinner, Gerhard</creator><creator>Tarnocai, Charles</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>KL.</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3309-4739</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0001-8405-1304</orcidid><orcidid>https://orcid.org/0000-0002-2959-5920</orcidid></search><sort><creationdate>20110906</creationdate><title>Permafrost carbon-climate feedbacks accelerate global warming</title><author>Koven, Charles D ; Ringeval, Bruno ; Friedlingstein, Pierre ; Ciais, Philippe ; Cadule, Patricia ; Khvorostyanov, Dmitry ; Krinner, Gerhard ; Tarnocai, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a706t-93188f2e9dba481e072760d1b04b5c6cd464f1207bff23d398744064603131ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological Sciences</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>carbon sinks</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Cold Climate</topic><topic>Earth Sciences</topic><topic>Ecosystem models</topic><topic>ecosystems</topic><topic>Emissions</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Geomorphology</topic><topic>GEOSCIENCES</topic><topic>Global Warming</topic><topic>GREENHOUSE EFFECT</topic><topic>inventories</topic><topic>LAWRENCE BERKELEY LABORATORY</topic><topic>Methane</topic><topic>methane production</topic><topic>mixing</topic><topic>Models, Theoretical</topic><topic>PERMAFROST</topic><topic>Physical Sciences</topic><topic>Sciences of the Universe</topic><topic>Soil heating</topic><topic>Soils</topic><topic>Terrestrial ecosystems</topic><topic>Wetland soils</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koven, Charles D</creatorcontrib><creatorcontrib>Ringeval, Bruno</creatorcontrib><creatorcontrib>Friedlingstein, Pierre</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Cadule, Patricia</creatorcontrib><creatorcontrib>Khvorostyanov, Dmitry</creatorcontrib><creatorcontrib>Krinner, Gerhard</creatorcontrib><creatorcontrib>Tarnocai, Charles</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koven, Charles D</au><au>Ringeval, Bruno</au><au>Friedlingstein, Pierre</au><au>Ciais, Philippe</au><au>Cadule, Patricia</au><au>Khvorostyanov, Dmitry</au><au>Krinner, Gerhard</au><au>Tarnocai, Charles</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permafrost carbon-climate feedbacks accelerate global warming</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-09-06</date><risdate>2011</risdate><volume>108</volume><issue>36</issue><spage>14769</spage><epage>14774</epage><pages>14769-14774</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21852573</pmid><doi>10.1073/pnas.1103910108</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3309-4739</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0001-8405-1304</orcidid><orcidid>https://orcid.org/0000-0002-2959-5920</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (36), p.14769-14774 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169129 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Carbon Carbon dioxide carbon sinks Climate change Climate models Cold Climate Earth Sciences Ecosystem models ecosystems Emissions ENVIRONMENTAL SCIENCES Geomorphology GEOSCIENCES Global Warming GREENHOUSE EFFECT inventories LAWRENCE BERKELEY LABORATORY Methane methane production mixing Models, Theoretical PERMAFROST Physical Sciences Sciences of the Universe Soil heating Soils Terrestrial ecosystems Wetland soils Wetlands |
title | Permafrost carbon-climate feedbacks accelerate global warming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permafrost%20carbon-climate%20feedbacks%20accelerate%20global%20warming&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Koven,%20Charles%20D&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2011-09-06&rft.volume=108&rft.issue=36&rft.spage=14769&rft.epage=14774&rft.pages=14769-14774&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1103910108&rft_dat=%3Cjstor_pubme%3E27979376%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889268482&rft_id=info:pmid/21852573&rft_jstor_id=27979376&rfr_iscdi=true |