Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods

Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2011-09, Vol.39 (16), p.e110-e110
Hauptverfasser: Li, Bingling, Ellington, Andrew D, Chen, Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e110
container_issue 16
container_start_page e110
container_title Nucleic acids research
container_volume 39
creator Li, Bingling
Ellington, Andrew D
Chen, Xi
description Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called 'catalyzed hairpin assembly'. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a k(cat) value above 1 min(-1). The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a 'plug-and-play' fashion.
doi_str_mv 10.1093/nar/gkr504
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3167626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>918052400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-409787112d85e3f84a2ed1cd7ead8eca5349cecc56154d00d19dd90a9108e9ec3</originalsourceid><addsrcrecordid>eNqFkV1L5TAQhoOs6PHjZn_AkruFxeqkSdrkRhC_QRREvQ0xmWrXtjmbpIL-eqtHZb3yamDmmZcZHkJ-MthmoPnOYOPO3UOUIJbIjPGqLISuyh9kBhxkwUCoVbKW0l8AJpgUK2S1ZJXmUsoZubm0uQ2D7bZoH_zY2Uitt_P81qWhoTg8P_VYNBGRHpzvUddGN7Y50RxoP3a5nXdIPWZ0bxs95vvg0wZZbmyXcPO9rpPro8Or_ZPi7OL4dH_vrHCilrkQoGtVM1Z6JZE3StgSPXO-RusVOiu50A6dk9V0twfwTHuvwWoGCjU6vk52F7nz8bZH73DI0XZmHtvexicTbGu-Tob23tyFR8NZVVdlNQX8fg-I4d-IKZu-TQ67zg4YxmQ0UyBLAfAtqVQtgQHIifyzIF0MKUVsPu9hYF6NmcmYWRib4F__f_CJfijiL6lElG8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>887501005</pqid></control><display><type>article</type><title>Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Bingling ; Ellington, Andrew D ; Chen, Xi</creator><creatorcontrib>Li, Bingling ; Ellington, Andrew D ; Chen, Xi</creatorcontrib><description>Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called 'catalyzed hairpin assembly'. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a k(cat) value above 1 min(-1). The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a 'plug-and-play' fashion.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkr504</identifier><identifier>PMID: 21693555</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adaptations ; Catalysis ; Circuits ; Colorimetry ; Colorimetry - methods ; Data processing ; DNA ; DNA - chemistry ; Electrochemical Techniques ; Fluorometry - methods ; Kinetics ; Methods Online ; Nucleic Acid Hybridization - methods ; RNA</subject><ispartof>Nucleic acids research, 2011-09, Vol.39 (16), p.e110-e110</ispartof><rights>The Author(s) 2011. Published by Oxford University Press. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-409787112d85e3f84a2ed1cd7ead8eca5349cecc56154d00d19dd90a9108e9ec3</citedby><cites>FETCH-LOGICAL-c475t-409787112d85e3f84a2ed1cd7ead8eca5349cecc56154d00d19dd90a9108e9ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167626/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167626/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21693555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bingling</creatorcontrib><creatorcontrib>Ellington, Andrew D</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><title>Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called 'catalyzed hairpin assembly'. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a k(cat) value above 1 min(-1). The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a 'plug-and-play' fashion.</description><subject>Adaptations</subject><subject>Catalysis</subject><subject>Circuits</subject><subject>Colorimetry</subject><subject>Colorimetry - methods</subject><subject>Data processing</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Electrochemical Techniques</subject><subject>Fluorometry - methods</subject><subject>Kinetics</subject><subject>Methods Online</subject><subject>Nucleic Acid Hybridization - methods</subject><subject>RNA</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1L5TAQhoOs6PHjZn_AkruFxeqkSdrkRhC_QRREvQ0xmWrXtjmbpIL-eqtHZb3yamDmmZcZHkJ-MthmoPnOYOPO3UOUIJbIjPGqLISuyh9kBhxkwUCoVbKW0l8AJpgUK2S1ZJXmUsoZubm0uQ2D7bZoH_zY2Uitt_P81qWhoTg8P_VYNBGRHpzvUddGN7Y50RxoP3a5nXdIPWZ0bxs95vvg0wZZbmyXcPO9rpPro8Or_ZPi7OL4dH_vrHCilrkQoGtVM1Z6JZE3StgSPXO-RusVOiu50A6dk9V0twfwTHuvwWoGCjU6vk52F7nz8bZH73DI0XZmHtvexicTbGu-Tob23tyFR8NZVVdlNQX8fg-I4d-IKZu-TQ67zg4YxmQ0UyBLAfAtqVQtgQHIifyzIF0MKUVsPu9hYF6NmcmYWRib4F__f_CJfijiL6lElG8</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Li, Bingling</creator><creator>Ellington, Andrew D</creator><creator>Chen, Xi</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110901</creationdate><title>Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods</title><author>Li, Bingling ; Ellington, Andrew D ; Chen, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-409787112d85e3f84a2ed1cd7ead8eca5349cecc56154d00d19dd90a9108e9ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptations</topic><topic>Catalysis</topic><topic>Circuits</topic><topic>Colorimetry</topic><topic>Colorimetry - methods</topic><topic>Data processing</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Electrochemical Techniques</topic><topic>Fluorometry - methods</topic><topic>Kinetics</topic><topic>Methods Online</topic><topic>Nucleic Acid Hybridization - methods</topic><topic>RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bingling</creatorcontrib><creatorcontrib>Ellington, Andrew D</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bingling</au><au>Ellington, Andrew D</au><au>Chen, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>39</volume><issue>16</issue><spage>e110</spage><epage>e110</epage><pages>e110-e110</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called 'catalyzed hairpin assembly'. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a k(cat) value above 1 min(-1). The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a 'plug-and-play' fashion.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>21693555</pmid><doi>10.1093/nar/gkr504</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2011-09, Vol.39 (16), p.e110-e110
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3167626
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptations
Catalysis
Circuits
Colorimetry
Colorimetry - methods
Data processing
DNA
DNA - chemistry
Electrochemical Techniques
Fluorometry - methods
Kinetics
Methods Online
Nucleic Acid Hybridization - methods
RNA
title Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational,%20modular%20adaptation%20of%20enzyme-free%20DNA%20circuits%20to%20multiple%20detection%20methods&rft.jtitle=Nucleic%20acids%20research&rft.au=Li,%20Bingling&rft.date=2011-09-01&rft.volume=39&rft.issue=16&rft.spage=e110&rft.epage=e110&rft.pages=e110-e110&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkr504&rft_dat=%3Cproquest_pubme%3E918052400%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=887501005&rft_id=info:pmid/21693555&rfr_iscdi=true