Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods
Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a m...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2011-09, Vol.39 (16), p.e110-e110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e110 |
---|---|
container_issue | 16 |
container_start_page | e110 |
container_title | Nucleic acids research |
container_volume | 39 |
creator | Li, Bingling Ellington, Andrew D Chen, Xi |
description | Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called 'catalyzed hairpin assembly'. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a k(cat) value above 1 min(-1). The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a 'plug-and-play' fashion. |
doi_str_mv | 10.1093/nar/gkr504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3167626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>918052400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-409787112d85e3f84a2ed1cd7ead8eca5349cecc56154d00d19dd90a9108e9ec3</originalsourceid><addsrcrecordid>eNqFkV1L5TAQhoOs6PHjZn_AkruFxeqkSdrkRhC_QRREvQ0xmWrXtjmbpIL-eqtHZb3yamDmmZcZHkJ-MthmoPnOYOPO3UOUIJbIjPGqLISuyh9kBhxkwUCoVbKW0l8AJpgUK2S1ZJXmUsoZubm0uQ2D7bZoH_zY2Uitt_P81qWhoTg8P_VYNBGRHpzvUddGN7Y50RxoP3a5nXdIPWZ0bxs95vvg0wZZbmyXcPO9rpPro8Or_ZPi7OL4dH_vrHCilrkQoGtVM1Z6JZE3StgSPXO-RusVOiu50A6dk9V0twfwTHuvwWoGCjU6vk52F7nz8bZH73DI0XZmHtvexicTbGu-Tob23tyFR8NZVVdlNQX8fg-I4d-IKZu-TQ67zg4YxmQ0UyBLAfAtqVQtgQHIifyzIF0MKUVsPu9hYF6NmcmYWRib4F__f_CJfijiL6lElG8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>887501005</pqid></control><display><type>article</type><title>Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Bingling ; Ellington, Andrew D ; Chen, Xi</creator><creatorcontrib>Li, Bingling ; Ellington, Andrew D ; Chen, Xi</creatorcontrib><description>Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called 'catalyzed hairpin assembly'. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a k(cat) value above 1 min(-1). The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a 'plug-and-play' fashion.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkr504</identifier><identifier>PMID: 21693555</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adaptations ; Catalysis ; Circuits ; Colorimetry ; Colorimetry - methods ; Data processing ; DNA ; DNA - chemistry ; Electrochemical Techniques ; Fluorometry - methods ; Kinetics ; Methods Online ; Nucleic Acid Hybridization - methods ; RNA</subject><ispartof>Nucleic acids research, 2011-09, Vol.39 (16), p.e110-e110</ispartof><rights>The Author(s) 2011. Published by Oxford University Press. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-409787112d85e3f84a2ed1cd7ead8eca5349cecc56154d00d19dd90a9108e9ec3</citedby><cites>FETCH-LOGICAL-c475t-409787112d85e3f84a2ed1cd7ead8eca5349cecc56154d00d19dd90a9108e9ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167626/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167626/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21693555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bingling</creatorcontrib><creatorcontrib>Ellington, Andrew D</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><title>Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called 'catalyzed hairpin assembly'. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a k(cat) value above 1 min(-1). The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a 'plug-and-play' fashion.</description><subject>Adaptations</subject><subject>Catalysis</subject><subject>Circuits</subject><subject>Colorimetry</subject><subject>Colorimetry - methods</subject><subject>Data processing</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Electrochemical Techniques</subject><subject>Fluorometry - methods</subject><subject>Kinetics</subject><subject>Methods Online</subject><subject>Nucleic Acid Hybridization - methods</subject><subject>RNA</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1L5TAQhoOs6PHjZn_AkruFxeqkSdrkRhC_QRREvQ0xmWrXtjmbpIL-eqtHZb3yamDmmZcZHkJ-MthmoPnOYOPO3UOUIJbIjPGqLISuyh9kBhxkwUCoVbKW0l8AJpgUK2S1ZJXmUsoZubm0uQ2D7bZoH_zY2Uitt_P81qWhoTg8P_VYNBGRHpzvUddGN7Y50RxoP3a5nXdIPWZ0bxs95vvg0wZZbmyXcPO9rpPro8Or_ZPi7OL4dH_vrHCilrkQoGtVM1Z6JZE3StgSPXO-RusVOiu50A6dk9V0twfwTHuvwWoGCjU6vk52F7nz8bZH73DI0XZmHtvexicTbGu-Tob23tyFR8NZVVdlNQX8fg-I4d-IKZu-TQ67zg4YxmQ0UyBLAfAtqVQtgQHIifyzIF0MKUVsPu9hYF6NmcmYWRib4F__f_CJfijiL6lElG8</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Li, Bingling</creator><creator>Ellington, Andrew D</creator><creator>Chen, Xi</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110901</creationdate><title>Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods</title><author>Li, Bingling ; Ellington, Andrew D ; Chen, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-409787112d85e3f84a2ed1cd7ead8eca5349cecc56154d00d19dd90a9108e9ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptations</topic><topic>Catalysis</topic><topic>Circuits</topic><topic>Colorimetry</topic><topic>Colorimetry - methods</topic><topic>Data processing</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Electrochemical Techniques</topic><topic>Fluorometry - methods</topic><topic>Kinetics</topic><topic>Methods Online</topic><topic>Nucleic Acid Hybridization - methods</topic><topic>RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bingling</creatorcontrib><creatorcontrib>Ellington, Andrew D</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bingling</au><au>Ellington, Andrew D</au><au>Chen, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>39</volume><issue>16</issue><spage>e110</spage><epage>e110</epage><pages>e110-e110</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called 'catalyzed hairpin assembly'. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a k(cat) value above 1 min(-1). The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a 'plug-and-play' fashion.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>21693555</pmid><doi>10.1093/nar/gkr504</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2011-09, Vol.39 (16), p.e110-e110 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3167626 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adaptations Catalysis Circuits Colorimetry Colorimetry - methods Data processing DNA DNA - chemistry Electrochemical Techniques Fluorometry - methods Kinetics Methods Online Nucleic Acid Hybridization - methods RNA |
title | Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational,%20modular%20adaptation%20of%20enzyme-free%20DNA%20circuits%20to%20multiple%20detection%20methods&rft.jtitle=Nucleic%20acids%20research&rft.au=Li,%20Bingling&rft.date=2011-09-01&rft.volume=39&rft.issue=16&rft.spage=e110&rft.epage=e110&rft.pages=e110-e110&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkr504&rft_dat=%3Cproquest_pubme%3E918052400%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=887501005&rft_id=info:pmid/21693555&rfr_iscdi=true |