Automatic segmentation of neonatal images using convex optimization and coupled level sets

Accurate segmentation of neonatal brain MR images remains challenging mainly due to their poor spatial resolution, inverted contrast between white matter and gray matter, and high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2011-10, Vol.58 (3), p.805-817
Hauptverfasser: Wang, Li, Shi, Feng, Lin, Weili, Gilmore, John H., Shen, Dinggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 817
container_issue 3
container_start_page 805
container_title NeuroImage (Orlando, Fla.)
container_volume 58
creator Wang, Li
Shi, Feng
Lin, Weili
Gilmore, John H.
Shen, Dinggang
description Accurate segmentation of neonatal brain MR images remains challenging mainly due to their poor spatial resolution, inverted contrast between white matter and gray matter, and high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although active contour/surface models with geometric information constraint have been successfully applied to adult brain segmentation, they are not fully explored in the neonatal image segmentation. In this paper, we propose a novel neonatal image segmentation method by combining local intensity information, atlas spatial prior, and cortical thickness constraint in a single level-set framework. Besides, we also provide a robust and reliable tissue surface initialization for the proposed method by using a convex optimization technique. Thus, tissue segmentation, as well as inner and outer cortical surface reconstruction, can be obtained simultaneously. The proposed method has been tested on a large neonatal dataset, and the validation on 10 neonatal brain images (with manual segmentations) shows very promising results. ► A novel coupled-level-sets method is proposed for neonatal image segmentation. ► Local information, atlas prior, and cortical thickness constraint are integrated. ► Convex optimization provides a reliable initialization for the coupled-level-sets.
doi_str_mv 10.1016/j.neuroimage.2011.06.064
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3166374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811911007105</els_id><sourcerecordid>3388572361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-919e69a2ee170b29e866a7c8df43664cbea682f847d94e4afb02a20f3de547473</originalsourceid><addsrcrecordid>eNqFkUtrVDEUx4Motla_ggRcuLpjXjePjVBLfUChG924CZncc8cM9yZjkjtoP70Zp1btpnAgh-SX_3n8EcKUrCih8s12FWHJKcxuAytGKF0R2UI8QqeUmL4zvWKPD3nPO02pOUHPStkSQgwV-ik6YVRJLgQ_RV_Pl5pmV4PHBTYzxNryFHEacYQUXXUT_l2m4KWEuME-xT38wGlXwxxujrCLQ7tfdhMMeII9TE2rlufoyeimAi9uzzP05f3l54uP3dX1h08X51edl0TUzlAD0jgGQBVZMwNaSqe8HkbBpRR-DU5qNmqhBiNAuHFNmGNk5AP0QgnFz9Dbo-5uWc8w-DZDdpPd5dZ3_mmTC_b_lxi-2U3aW06l5Eo0gde3Ajl9X6BUO4fiYZpcW8FSrCGKKiWpfJDUWvWE9ZI38tU9cpuWHNseLO2FkUI0Dxqlj5TPqZQM413XlNiD03Zr_zptD05bIlscmn7579R3H_9Y24B3RwDa7vcBsi0-QPQwhAy-2iGFh6v8AhpNwVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549644217</pqid></control><display><type>article</type><title>Automatic segmentation of neonatal images using convex optimization and coupled level sets</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Wang, Li ; Shi, Feng ; Lin, Weili ; Gilmore, John H. ; Shen, Dinggang</creator><creatorcontrib>Wang, Li ; Shi, Feng ; Lin, Weili ; Gilmore, John H. ; Shen, Dinggang</creatorcontrib><description>Accurate segmentation of neonatal brain MR images remains challenging mainly due to their poor spatial resolution, inverted contrast between white matter and gray matter, and high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although active contour/surface models with geometric information constraint have been successfully applied to adult brain segmentation, they are not fully explored in the neonatal image segmentation. In this paper, we propose a novel neonatal image segmentation method by combining local intensity information, atlas spatial prior, and cortical thickness constraint in a single level-set framework. Besides, we also provide a robust and reliable tissue surface initialization for the proposed method by using a convex optimization technique. Thus, tissue segmentation, as well as inner and outer cortical surface reconstruction, can be obtained simultaneously. The proposed method has been tested on a large neonatal dataset, and the validation on 10 neonatal brain images (with manual segmentations) shows very promising results. ► A novel coupled-level-sets method is proposed for neonatal image segmentation. ► Local information, atlas prior, and cortical thickness constraint are integrated. ► Convex optimization provides a reliable initialization for the coupled-level-sets.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2011.06.064</identifier><identifier>PMID: 21763443</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Atlas-based segmentation ; Boundaries ; Brain ; Brain - anatomy &amp; histology ; Brain Mapping - methods ; Classification ; Convex analysis ; Convex optimization ; Coupled level sets ; Humans ; Image Interpretation, Computer-Assisted - methods ; Infant, Newborn ; Magnetic Resonance Imaging ; Methods ; Neonatal tissue segmentation</subject><ispartof>NeuroImage (Orlando, Fla.), 2011-10, Vol.58 (3), p.805-817</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 1, 2011</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-919e69a2ee170b29e866a7c8df43664cbea682f847d94e4afb02a20f3de547473</citedby><cites>FETCH-LOGICAL-c604t-919e69a2ee170b29e866a7c8df43664cbea682f847d94e4afb02a20f3de547473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1549644217?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994,64384,64386,64388,72340</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21763443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Shi, Feng</creatorcontrib><creatorcontrib>Lin, Weili</creatorcontrib><creatorcontrib>Gilmore, John H.</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><title>Automatic segmentation of neonatal images using convex optimization and coupled level sets</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Accurate segmentation of neonatal brain MR images remains challenging mainly due to their poor spatial resolution, inverted contrast between white matter and gray matter, and high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although active contour/surface models with geometric information constraint have been successfully applied to adult brain segmentation, they are not fully explored in the neonatal image segmentation. In this paper, we propose a novel neonatal image segmentation method by combining local intensity information, atlas spatial prior, and cortical thickness constraint in a single level-set framework. Besides, we also provide a robust and reliable tissue surface initialization for the proposed method by using a convex optimization technique. Thus, tissue segmentation, as well as inner and outer cortical surface reconstruction, can be obtained simultaneously. The proposed method has been tested on a large neonatal dataset, and the validation on 10 neonatal brain images (with manual segmentations) shows very promising results. ► A novel coupled-level-sets method is proposed for neonatal image segmentation. ► Local information, atlas prior, and cortical thickness constraint are integrated. ► Convex optimization provides a reliable initialization for the coupled-level-sets.</description><subject>Algorithms</subject><subject>Atlas-based segmentation</subject><subject>Boundaries</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain Mapping - methods</subject><subject>Classification</subject><subject>Convex analysis</subject><subject>Convex optimization</subject><subject>Coupled level sets</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Infant, Newborn</subject><subject>Magnetic Resonance Imaging</subject><subject>Methods</subject><subject>Neonatal tissue segmentation</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtrVDEUx4Motla_ggRcuLpjXjePjVBLfUChG924CZncc8cM9yZjkjtoP70Zp1btpnAgh-SX_3n8EcKUrCih8s12FWHJKcxuAytGKF0R2UI8QqeUmL4zvWKPD3nPO02pOUHPStkSQgwV-ik6YVRJLgQ_RV_Pl5pmV4PHBTYzxNryFHEacYQUXXUT_l2m4KWEuME-xT38wGlXwxxujrCLQ7tfdhMMeII9TE2rlufoyeimAi9uzzP05f3l54uP3dX1h08X51edl0TUzlAD0jgGQBVZMwNaSqe8HkbBpRR-DU5qNmqhBiNAuHFNmGNk5AP0QgnFz9Dbo-5uWc8w-DZDdpPd5dZ3_mmTC_b_lxi-2U3aW06l5Eo0gde3Ajl9X6BUO4fiYZpcW8FSrCGKKiWpfJDUWvWE9ZI38tU9cpuWHNseLO2FkUI0Dxqlj5TPqZQM413XlNiD03Zr_zptD05bIlscmn7579R3H_9Y24B3RwDa7vcBsi0-QPQwhAy-2iGFh6v8AhpNwVQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Wang, Li</creator><creator>Shi, Feng</creator><creator>Lin, Weili</creator><creator>Gilmore, John H.</creator><creator>Shen, Dinggang</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20111001</creationdate><title>Automatic segmentation of neonatal images using convex optimization and coupled level sets</title><author>Wang, Li ; Shi, Feng ; Lin, Weili ; Gilmore, John H. ; Shen, Dinggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-919e69a2ee170b29e866a7c8df43664cbea682f847d94e4afb02a20f3de547473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Atlas-based segmentation</topic><topic>Boundaries</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain Mapping - methods</topic><topic>Classification</topic><topic>Convex analysis</topic><topic>Convex optimization</topic><topic>Coupled level sets</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Infant, Newborn</topic><topic>Magnetic Resonance Imaging</topic><topic>Methods</topic><topic>Neonatal tissue segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Shi, Feng</creatorcontrib><creatorcontrib>Lin, Weili</creatorcontrib><creatorcontrib>Gilmore, John H.</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Li</au><au>Shi, Feng</au><au>Lin, Weili</au><au>Gilmore, John H.</au><au>Shen, Dinggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic segmentation of neonatal images using convex optimization and coupled level sets</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>58</volume><issue>3</issue><spage>805</spage><epage>817</epage><pages>805-817</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Accurate segmentation of neonatal brain MR images remains challenging mainly due to their poor spatial resolution, inverted contrast between white matter and gray matter, and high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although active contour/surface models with geometric information constraint have been successfully applied to adult brain segmentation, they are not fully explored in the neonatal image segmentation. In this paper, we propose a novel neonatal image segmentation method by combining local intensity information, atlas spatial prior, and cortical thickness constraint in a single level-set framework. Besides, we also provide a robust and reliable tissue surface initialization for the proposed method by using a convex optimization technique. Thus, tissue segmentation, as well as inner and outer cortical surface reconstruction, can be obtained simultaneously. The proposed method has been tested on a large neonatal dataset, and the validation on 10 neonatal brain images (with manual segmentations) shows very promising results. ► A novel coupled-level-sets method is proposed for neonatal image segmentation. ► Local information, atlas prior, and cortical thickness constraint are integrated. ► Convex optimization provides a reliable initialization for the coupled-level-sets.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21763443</pmid><doi>10.1016/j.neuroimage.2011.06.064</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2011-10, Vol.58 (3), p.805-817
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3166374
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Algorithms
Atlas-based segmentation
Boundaries
Brain
Brain - anatomy & histology
Brain Mapping - methods
Classification
Convex analysis
Convex optimization
Coupled level sets
Humans
Image Interpretation, Computer-Assisted - methods
Infant, Newborn
Magnetic Resonance Imaging
Methods
Neonatal tissue segmentation
title Automatic segmentation of neonatal images using convex optimization and coupled level sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20segmentation%20of%20neonatal%20images%20using%20convex%20optimization%20and%20coupled%20level%20sets&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Wang,%20Li&rft.date=2011-10-01&rft.volume=58&rft.issue=3&rft.spage=805&rft.epage=817&rft.pages=805-817&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2011.06.064&rft_dat=%3Cproquest_pubme%3E3388572361%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549644217&rft_id=info:pmid/21763443&rft_els_id=S1053811911007105&rfr_iscdi=true