Automatic segmentation of neonatal images using convex optimization and coupled level sets
Accurate segmentation of neonatal brain MR images remains challenging mainly due to their poor spatial resolution, inverted contrast between white matter and gray matter, and high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2011-10, Vol.58 (3), p.805-817 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 817 |
---|---|
container_issue | 3 |
container_start_page | 805 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 58 |
creator | Wang, Li Shi, Feng Lin, Weili Gilmore, John H. Shen, Dinggang |
description | Accurate segmentation of neonatal brain MR images remains challenging mainly due to their poor spatial resolution, inverted contrast between white matter and gray matter, and high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although active contour/surface models with geometric information constraint have been successfully applied to adult brain segmentation, they are not fully explored in the neonatal image segmentation. In this paper, we propose a novel neonatal image segmentation method by combining local intensity information, atlas spatial prior, and cortical thickness constraint in a single level-set framework. Besides, we also provide a robust and reliable tissue surface initialization for the proposed method by using a convex optimization technique. Thus, tissue segmentation, as well as inner and outer cortical surface reconstruction, can be obtained simultaneously. The proposed method has been tested on a large neonatal dataset, and the validation on 10 neonatal brain images (with manual segmentations) shows very promising results.
► A novel coupled-level-sets method is proposed for neonatal image segmentation. ► Local information, atlas prior, and cortical thickness constraint are integrated. ► Convex optimization provides a reliable initialization for the coupled-level-sets. |
doi_str_mv | 10.1016/j.neuroimage.2011.06.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3166374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811911007105</els_id><sourcerecordid>3388572361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-919e69a2ee170b29e866a7c8df43664cbea682f847d94e4afb02a20f3de547473</originalsourceid><addsrcrecordid>eNqFkUtrVDEUx4Motla_ggRcuLpjXjePjVBLfUChG924CZncc8cM9yZjkjtoP70Zp1btpnAgh-SX_3n8EcKUrCih8s12FWHJKcxuAytGKF0R2UI8QqeUmL4zvWKPD3nPO02pOUHPStkSQgwV-ik6YVRJLgQ_RV_Pl5pmV4PHBTYzxNryFHEacYQUXXUT_l2m4KWEuME-xT38wGlXwxxujrCLQ7tfdhMMeII9TE2rlufoyeimAi9uzzP05f3l54uP3dX1h08X51edl0TUzlAD0jgGQBVZMwNaSqe8HkbBpRR-DU5qNmqhBiNAuHFNmGNk5AP0QgnFz9Dbo-5uWc8w-DZDdpPd5dZ3_mmTC_b_lxi-2U3aW06l5Eo0gde3Ajl9X6BUO4fiYZpcW8FSrCGKKiWpfJDUWvWE9ZI38tU9cpuWHNseLO2FkUI0Dxqlj5TPqZQM413XlNiD03Zr_zptD05bIlscmn7579R3H_9Y24B3RwDa7vcBsi0-QPQwhAy-2iGFh6v8AhpNwVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549644217</pqid></control><display><type>article</type><title>Automatic segmentation of neonatal images using convex optimization and coupled level sets</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Wang, Li ; Shi, Feng ; Lin, Weili ; Gilmore, John H. ; Shen, Dinggang</creator><creatorcontrib>Wang, Li ; Shi, Feng ; Lin, Weili ; Gilmore, John H. ; Shen, Dinggang</creatorcontrib><description>Accurate segmentation of neonatal brain MR images remains challenging mainly due to their poor spatial resolution, inverted contrast between white matter and gray matter, and high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although active contour/surface models with geometric information constraint have been successfully applied to adult brain segmentation, they are not fully explored in the neonatal image segmentation. In this paper, we propose a novel neonatal image segmentation method by combining local intensity information, atlas spatial prior, and cortical thickness constraint in a single level-set framework. Besides, we also provide a robust and reliable tissue surface initialization for the proposed method by using a convex optimization technique. Thus, tissue segmentation, as well as inner and outer cortical surface reconstruction, can be obtained simultaneously. The proposed method has been tested on a large neonatal dataset, and the validation on 10 neonatal brain images (with manual segmentations) shows very promising results.
► A novel coupled-level-sets method is proposed for neonatal image segmentation. ► Local information, atlas prior, and cortical thickness constraint are integrated. ► Convex optimization provides a reliable initialization for the coupled-level-sets.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2011.06.064</identifier><identifier>PMID: 21763443</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Atlas-based segmentation ; Boundaries ; Brain ; Brain - anatomy & histology ; Brain Mapping - methods ; Classification ; Convex analysis ; Convex optimization ; Coupled level sets ; Humans ; Image Interpretation, Computer-Assisted - methods ; Infant, Newborn ; Magnetic Resonance Imaging ; Methods ; Neonatal tissue segmentation</subject><ispartof>NeuroImage (Orlando, Fla.), 2011-10, Vol.58 (3), p.805-817</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 1, 2011</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-919e69a2ee170b29e866a7c8df43664cbea682f847d94e4afb02a20f3de547473</citedby><cites>FETCH-LOGICAL-c604t-919e69a2ee170b29e866a7c8df43664cbea682f847d94e4afb02a20f3de547473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1549644217?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994,64384,64386,64388,72340</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21763443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Shi, Feng</creatorcontrib><creatorcontrib>Lin, Weili</creatorcontrib><creatorcontrib>Gilmore, John H.</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><title>Automatic segmentation of neonatal images using convex optimization and coupled level sets</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Accurate segmentation of neonatal brain MR images remains challenging mainly due to their poor spatial resolution, inverted contrast between white matter and gray matter, and high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although active contour/surface models with geometric information constraint have been successfully applied to adult brain segmentation, they are not fully explored in the neonatal image segmentation. In this paper, we propose a novel neonatal image segmentation method by combining local intensity information, atlas spatial prior, and cortical thickness constraint in a single level-set framework. Besides, we also provide a robust and reliable tissue surface initialization for the proposed method by using a convex optimization technique. Thus, tissue segmentation, as well as inner and outer cortical surface reconstruction, can be obtained simultaneously. The proposed method has been tested on a large neonatal dataset, and the validation on 10 neonatal brain images (with manual segmentations) shows very promising results.
► A novel coupled-level-sets method is proposed for neonatal image segmentation. ► Local information, atlas prior, and cortical thickness constraint are integrated. ► Convex optimization provides a reliable initialization for the coupled-level-sets.</description><subject>Algorithms</subject><subject>Atlas-based segmentation</subject><subject>Boundaries</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain Mapping - methods</subject><subject>Classification</subject><subject>Convex analysis</subject><subject>Convex optimization</subject><subject>Coupled level sets</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Infant, Newborn</subject><subject>Magnetic Resonance Imaging</subject><subject>Methods</subject><subject>Neonatal tissue segmentation</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtrVDEUx4Motla_ggRcuLpjXjePjVBLfUChG924CZncc8cM9yZjkjtoP70Zp1btpnAgh-SX_3n8EcKUrCih8s12FWHJKcxuAytGKF0R2UI8QqeUmL4zvWKPD3nPO02pOUHPStkSQgwV-ik6YVRJLgQ_RV_Pl5pmV4PHBTYzxNryFHEacYQUXXUT_l2m4KWEuME-xT38wGlXwxxujrCLQ7tfdhMMeII9TE2rlufoyeimAi9uzzP05f3l54uP3dX1h08X51edl0TUzlAD0jgGQBVZMwNaSqe8HkbBpRR-DU5qNmqhBiNAuHFNmGNk5AP0QgnFz9Dbo-5uWc8w-DZDdpPd5dZ3_mmTC_b_lxi-2U3aW06l5Eo0gde3Ajl9X6BUO4fiYZpcW8FSrCGKKiWpfJDUWvWE9ZI38tU9cpuWHNseLO2FkUI0Dxqlj5TPqZQM413XlNiD03Zr_zptD05bIlscmn7579R3H_9Y24B3RwDa7vcBsi0-QPQwhAy-2iGFh6v8AhpNwVQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Wang, Li</creator><creator>Shi, Feng</creator><creator>Lin, Weili</creator><creator>Gilmore, John H.</creator><creator>Shen, Dinggang</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20111001</creationdate><title>Automatic segmentation of neonatal images using convex optimization and coupled level sets</title><author>Wang, Li ; Shi, Feng ; Lin, Weili ; Gilmore, John H. ; Shen, Dinggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-919e69a2ee170b29e866a7c8df43664cbea682f847d94e4afb02a20f3de547473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Atlas-based segmentation</topic><topic>Boundaries</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain Mapping - methods</topic><topic>Classification</topic><topic>Convex analysis</topic><topic>Convex optimization</topic><topic>Coupled level sets</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Infant, Newborn</topic><topic>Magnetic Resonance Imaging</topic><topic>Methods</topic><topic>Neonatal tissue segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Shi, Feng</creatorcontrib><creatorcontrib>Lin, Weili</creatorcontrib><creatorcontrib>Gilmore, John H.</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Li</au><au>Shi, Feng</au><au>Lin, Weili</au><au>Gilmore, John H.</au><au>Shen, Dinggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic segmentation of neonatal images using convex optimization and coupled level sets</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>58</volume><issue>3</issue><spage>805</spage><epage>817</epage><pages>805-817</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Accurate segmentation of neonatal brain MR images remains challenging mainly due to their poor spatial resolution, inverted contrast between white matter and gray matter, and high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although active contour/surface models with geometric information constraint have been successfully applied to adult brain segmentation, they are not fully explored in the neonatal image segmentation. In this paper, we propose a novel neonatal image segmentation method by combining local intensity information, atlas spatial prior, and cortical thickness constraint in a single level-set framework. Besides, we also provide a robust and reliable tissue surface initialization for the proposed method by using a convex optimization technique. Thus, tissue segmentation, as well as inner and outer cortical surface reconstruction, can be obtained simultaneously. The proposed method has been tested on a large neonatal dataset, and the validation on 10 neonatal brain images (with manual segmentations) shows very promising results.
► A novel coupled-level-sets method is proposed for neonatal image segmentation. ► Local information, atlas prior, and cortical thickness constraint are integrated. ► Convex optimization provides a reliable initialization for the coupled-level-sets.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21763443</pmid><doi>10.1016/j.neuroimage.2011.06.064</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2011-10, Vol.58 (3), p.805-817 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3166374 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Algorithms Atlas-based segmentation Boundaries Brain Brain - anatomy & histology Brain Mapping - methods Classification Convex analysis Convex optimization Coupled level sets Humans Image Interpretation, Computer-Assisted - methods Infant, Newborn Magnetic Resonance Imaging Methods Neonatal tissue segmentation |
title | Automatic segmentation of neonatal images using convex optimization and coupled level sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20segmentation%20of%20neonatal%20images%20using%20convex%20optimization%20and%20coupled%20level%20sets&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Wang,%20Li&rft.date=2011-10-01&rft.volume=58&rft.issue=3&rft.spage=805&rft.epage=817&rft.pages=805-817&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2011.06.064&rft_dat=%3Cproquest_pubme%3E3388572361%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549644217&rft_id=info:pmid/21763443&rft_els_id=S1053811911007105&rfr_iscdi=true |