Porcine Ex Vivo Liver Phantom for Dynamic Contrast-Enhanced Computed Tomography: Development and Initial Results

OBJECTIVES:To demonstrate the feasibility of developing a fixed, dual-input, biologic liver phantom for dynamic contrast-enhanced computed tomography (CT) imaging and to report initial results of use of the phantom for quantitative CT perfusion imaging. MATERIALS AND METHODS:Porcine livers were obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative radiology 2011-09, Vol.46 (9), p.586-593
Hauptverfasser: Thompson, Scott M, Ramirez-Giraldo, Juan C, Knudsen, Bruce, Grande, Joseph P, Christner, Jodie A, Xu, Man, Woodrum, David A, McCollough, Cynthia H, Callstrom, Matthew R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OBJECTIVES:To demonstrate the feasibility of developing a fixed, dual-input, biologic liver phantom for dynamic contrast-enhanced computed tomography (CT) imaging and to report initial results of use of the phantom for quantitative CT perfusion imaging. MATERIALS AND METHODS:Porcine livers were obtained from completed surgical studies and perfused with saline and fixative. The phantom was placed in a body-shaped, CT-compatible acrylic container and connected to a perfusion circuit fitted with a contrast injection port. Flow-controlled contrast-enhanced imaging experiments were performed using 128-slice and 64-slice dual-source multidetector CT scanners. CT angiography protocols were used to obtain portal venous and hepatic arterial vascular enhancement, reproduced over a period of 4 to 6 months. CT perfusion protocols were used at different input flow rates to correlate input flow with calculated tissue perfusion, to test reproducibility, and to determine the feasibility of simultaneous dual-input liver perfusion. Histologic analysis of the liver phantom was also performed. RESULTS:CT angiogram 3-dimensional reconstructions demonstrated homogenous tertiary and quaternary branching of the portal venous system to the periphery of all lobes of the liver as well as enhancement of the hepatic arterial system to all lobes of the liver and gallbladder throughout the study period. For perfusion CT, the correlation between the calculated mean tissue perfusion in a volume of interest and input pump flow rate was excellent (R = 0.996) and color blood flow maps demonstrated variations in regional perfusion in a narrow range. Repeat perfusion CT experiments demonstrated reproducible time-attenuation curves, and dual-input perfusion CT experiments demonstrated that simultaneous dual input liver perfusion is feasible. Histologic analysis demonstrated that the hepatic microvasculature and architecture appeared intact and well preserved at the completion of 4 to 6 months of laboratory experiments and contrast-enhanced imaging. CONCLUSIONS:We have demonstrated successful development of a porcine liver phantom using a flow-controlled extracorporeal perfusion circuit. This phantom exhibited reproducible dynamic contrast-enhanced CT of the hepatic arterial and portal venous system over a 4- to 6-month period.
ISSN:0020-9996
1536-0210
DOI:10.1097/RLI.0b013e31821c0e84