The Binding Process of a Nonspecific Enzyme with DNA

Protein-DNA recognition of a nonspecific complex is modeled to understand the nature of the transient encounter states. We consider the structural and energetic features and the role of water in the DNA grooves in the process of protein-DNA recognition. Here we have used the nuclease domain of colic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2011-09, Vol.101 (5), p.1139-1147
Hauptverfasser: Chen, Chuanying, Pettitt, B. Montgomery
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1147
container_issue 5
container_start_page 1139
container_title Biophysical journal
container_volume 101
creator Chen, Chuanying
Pettitt, B. Montgomery
description Protein-DNA recognition of a nonspecific complex is modeled to understand the nature of the transient encounter states. We consider the structural and energetic features and the role of water in the DNA grooves in the process of protein-DNA recognition. Here we have used the nuclease domain of colicin E7 (N-ColE7) from Escherichia coli in complex with a 12-bp DNA duplex as the model system to consider how a protein approaches, encounters, and associates with DNA. Multiscale simulation studies using Brownian dynamics and molecular-dynamics simulations were performed to provide the binding process on multiple length- and timescales. We define the encounter states and identified the spatial and orientational aspects. For the molecular length-scales, we used molecular-dynamics simulations. Several intermediate binding states were found, which have different positions and orientations of protein around DNA including major and minor groove orientations. The results show that the contact number and the hydrated interfacial area are measures that facilitate better understanding of sequence-independent protein-DNA binding landscapes and pathways.
doi_str_mv 10.1016/j.bpj.2011.07.016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3164187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349511008460</els_id><sourcerecordid>2451718841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-70a22342b1eb444eaded5f2a7244282b9ec3277f92c63380f938d5fb195d16123</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxVcIREvhA3CBFRdOCTO2d20LCamU8keqChLt2fJ6ZxNHiR3sTVH59HiVEuACJ0vj37yZea-qniLMEbB9tZp329WcAeIc5LxU7lXH2Ag2A1Dt_eoYANoZF7o5qh7lvAJA1gA-rI4YKqVFg8eVuFpS_daH3odF_SVFRznXcahtfRlD3pLzg3f1efhxu6H6ux-X9bvL08fVg8GuMz25e0-q6_fnV2cfZxefP3w6O72YuaaFcSbBMsYF65A6IQTZnvpmYFYyIZhinSbHmZSDZq7lXMGguSpAh7rpsUXGT6o3e93trttQ7yiMya7NNvmNTbcmWm_-_gl-aRbxxnBsBSpZBF7sBWIevcnOj-SWLoZAbjQIXHGpCvTybkqK33aUR7Px2dF6bQPFXTYaJCrkkv2XVErKRjOA34MP5CruUihmFUizVikxbYd7yKWYc6LhcBmCmQI2K1MCNlPABqQpldLz7E9LDh2_Ei3A8z0w2GjsIvlsrr8Whaakj6j1JPF6T1CJ7sZTmoyh4Kj3afKlj_4fC_wEXiG7_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889268847</pqid></control><display><type>article</type><title>The Binding Process of a Nonspecific Enzyme with DNA</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chen, Chuanying ; Pettitt, B. Montgomery</creator><creatorcontrib>Chen, Chuanying ; Pettitt, B. Montgomery ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Protein-DNA recognition of a nonspecific complex is modeled to understand the nature of the transient encounter states. We consider the structural and energetic features and the role of water in the DNA grooves in the process of protein-DNA recognition. Here we have used the nuclease domain of colicin E7 (N-ColE7) from Escherichia coli in complex with a 12-bp DNA duplex as the model system to consider how a protein approaches, encounters, and associates with DNA. Multiscale simulation studies using Brownian dynamics and molecular-dynamics simulations were performed to provide the binding process on multiple length- and timescales. We define the encounter states and identified the spatial and orientational aspects. For the molecular length-scales, we used molecular-dynamics simulations. Several intermediate binding states were found, which have different positions and orientations of protein around DNA including major and minor groove orientations. The results show that the contact number and the hydrated interfacial area are measures that facilitate better understanding of sequence-independent protein-DNA binding landscapes and pathways.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2011.07.016</identifier><identifier>PMID: 21889451</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Amino Acid Motifs ; Base Pairing ; BASIC BIOLOGICAL SCIENCES ; Binding sites ; Brownian motion ; colicins ; Colicins - chemistry ; Colicins - metabolism ; Deoxyribonucleases - metabolism ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - metabolism ; E coli ; Environmental Molecular Sciences Laboratory ; ENZYMES ; ESCHERICHIA COLI ; Escherichia coli - enzymology ; landscapes ; molecular dynamics ; Molecular Dynamics Simulation ; NUCLEASES ; Nucleic Acid ; Protein Binding ; Protein Structure, Tertiary ; PROTEINS ; SIMULATION ; Static Electricity ; Substrate Specificity ; Thermodynamics ; TRANSIENTS ; WATER</subject><ispartof>Biophysical journal, 2011-09, Vol.101 (5), p.1139-1147</ispartof><rights>2011 Biophysical Society</rights><rights>Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Sep 7, 2011</rights><rights>2011 by the Biophysical Society. 2011 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-70a22342b1eb444eaded5f2a7244282b9ec3277f92c63380f938d5fb195d16123</citedby><cites>FETCH-LOGICAL-c560t-70a22342b1eb444eaded5f2a7244282b9ec3277f92c63380f938d5fb195d16123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164187/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2011.07.016$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21889451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1038378$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chuanying</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>The Binding Process of a Nonspecific Enzyme with DNA</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Protein-DNA recognition of a nonspecific complex is modeled to understand the nature of the transient encounter states. We consider the structural and energetic features and the role of water in the DNA grooves in the process of protein-DNA recognition. Here we have used the nuclease domain of colicin E7 (N-ColE7) from Escherichia coli in complex with a 12-bp DNA duplex as the model system to consider how a protein approaches, encounters, and associates with DNA. Multiscale simulation studies using Brownian dynamics and molecular-dynamics simulations were performed to provide the binding process on multiple length- and timescales. We define the encounter states and identified the spatial and orientational aspects. For the molecular length-scales, we used molecular-dynamics simulations. Several intermediate binding states were found, which have different positions and orientations of protein around DNA including major and minor groove orientations. The results show that the contact number and the hydrated interfacial area are measures that facilitate better understanding of sequence-independent protein-DNA binding landscapes and pathways.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Amino Acid Motifs</subject><subject>Base Pairing</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding sites</subject><subject>Brownian motion</subject><subject>colicins</subject><subject>Colicins - chemistry</subject><subject>Colicins - metabolism</subject><subject>Deoxyribonucleases - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>E coli</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>ENZYMES</subject><subject>ESCHERICHIA COLI</subject><subject>Escherichia coli - enzymology</subject><subject>landscapes</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>NUCLEASES</subject><subject>Nucleic Acid</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>SIMULATION</subject><subject>Static Electricity</subject><subject>Substrate Specificity</subject><subject>Thermodynamics</subject><subject>TRANSIENTS</subject><subject>WATER</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9vEzEQxVcIREvhA3CBFRdOCTO2d20LCamU8keqChLt2fJ6ZxNHiR3sTVH59HiVEuACJ0vj37yZea-qniLMEbB9tZp329WcAeIc5LxU7lXH2Ag2A1Dt_eoYANoZF7o5qh7lvAJA1gA-rI4YKqVFg8eVuFpS_daH3odF_SVFRznXcahtfRlD3pLzg3f1efhxu6H6ux-X9bvL08fVg8GuMz25e0-q6_fnV2cfZxefP3w6O72YuaaFcSbBMsYF65A6IQTZnvpmYFYyIZhinSbHmZSDZq7lXMGguSpAh7rpsUXGT6o3e93trttQ7yiMya7NNvmNTbcmWm_-_gl-aRbxxnBsBSpZBF7sBWIevcnOj-SWLoZAbjQIXHGpCvTybkqK33aUR7Px2dF6bQPFXTYaJCrkkv2XVErKRjOA34MP5CruUihmFUizVikxbYd7yKWYc6LhcBmCmQI2K1MCNlPABqQpldLz7E9LDh2_Ei3A8z0w2GjsIvlsrr8Whaakj6j1JPF6T1CJ7sZTmoyh4Kj3afKlj_4fC_wEXiG7_w</recordid><startdate>20110907</startdate><enddate>20110907</enddate><creator>Chen, Chuanying</creator><creator>Pettitt, B. Montgomery</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20110907</creationdate><title>The Binding Process of a Nonspecific Enzyme with DNA</title><author>Chen, Chuanying ; Pettitt, B. Montgomery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-70a22342b1eb444eaded5f2a7244282b9ec3277f92c63380f938d5fb195d16123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Amino Acid Motifs</topic><topic>Base Pairing</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding sites</topic><topic>Brownian motion</topic><topic>colicins</topic><topic>Colicins - chemistry</topic><topic>Colicins - metabolism</topic><topic>Deoxyribonucleases - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>E coli</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>ENZYMES</topic><topic>ESCHERICHIA COLI</topic><topic>Escherichia coli - enzymology</topic><topic>landscapes</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>NUCLEASES</topic><topic>Nucleic Acid</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>SIMULATION</topic><topic>Static Electricity</topic><topic>Substrate Specificity</topic><topic>Thermodynamics</topic><topic>TRANSIENTS</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chuanying</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chuanying</au><au>Pettitt, B. Montgomery</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Binding Process of a Nonspecific Enzyme with DNA</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2011-09-07</date><risdate>2011</risdate><volume>101</volume><issue>5</issue><spage>1139</spage><epage>1147</epage><pages>1139-1147</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Protein-DNA recognition of a nonspecific complex is modeled to understand the nature of the transient encounter states. We consider the structural and energetic features and the role of water in the DNA grooves in the process of protein-DNA recognition. Here we have used the nuclease domain of colicin E7 (N-ColE7) from Escherichia coli in complex with a 12-bp DNA duplex as the model system to consider how a protein approaches, encounters, and associates with DNA. Multiscale simulation studies using Brownian dynamics and molecular-dynamics simulations were performed to provide the binding process on multiple length- and timescales. We define the encounter states and identified the spatial and orientational aspects. For the molecular length-scales, we used molecular-dynamics simulations. Several intermediate binding states were found, which have different positions and orientations of protein around DNA including major and minor groove orientations. The results show that the contact number and the hydrated interfacial area are measures that facilitate better understanding of sequence-independent protein-DNA binding landscapes and pathways.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21889451</pmid><doi>10.1016/j.bpj.2011.07.016</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2011-09, Vol.101 (5), p.1139-1147
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3164187
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 60 APPLIED LIFE SCIENCES
Amino Acid Motifs
Base Pairing
BASIC BIOLOGICAL SCIENCES
Binding sites
Brownian motion
colicins
Colicins - chemistry
Colicins - metabolism
Deoxyribonucleases - metabolism
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - metabolism
E coli
Environmental Molecular Sciences Laboratory
ENZYMES
ESCHERICHIA COLI
Escherichia coli - enzymology
landscapes
molecular dynamics
Molecular Dynamics Simulation
NUCLEASES
Nucleic Acid
Protein Binding
Protein Structure, Tertiary
PROTEINS
SIMULATION
Static Electricity
Substrate Specificity
Thermodynamics
TRANSIENTS
WATER
title The Binding Process of a Nonspecific Enzyme with DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Binding%20Process%20of%20a%20Nonspecific%20Enzyme%20with%20DNA&rft.jtitle=Biophysical%20journal&rft.au=Chen,%20Chuanying&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2011-09-07&rft.volume=101&rft.issue=5&rft.spage=1139&rft.epage=1147&rft.pages=1139-1147&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2011.07.016&rft_dat=%3Cproquest_pubme%3E2451718841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889268847&rft_id=info:pmid/21889451&rft_els_id=S0006349511008460&rfr_iscdi=true