The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models

Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study. Protein and gene expression profiles were determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2011-09, Vol.60 (9), p.2370-2378
Hauptverfasser: OPREANU, Madalina, TIKHONENKO, Maria, KOLESNICK, Richard, GRANT, Maria B, BUSIK, Julia V, BOZACK, Svetlana, LYDIC, Todd A, REID, Gavin E, MCSORLEY, Kelly M, SOCHACKI, Andrew, PEREZ, Gloria I, ESSELMAN, Walter J, KERN, Timothy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2378
container_issue 9
container_start_page 2370
container_title Diabetes (New York, N.Y.)
container_volume 60
creator OPREANU, Madalina
TIKHONENKO, Maria
KOLESNICK, Richard
GRANT, Maria B
BUSIK, Julia V
BOZACK, Svetlana
LYDIC, Todd A
REID, Gavin E
MCSORLEY, Kelly M
SOCHACKI, Andrew
PEREZ, Gloria I
ESSELMAN, Walter J
KERN, Timothy
description Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study. Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies. We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α-induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM(-/-) mice or inhibition of ASM activity by DHA prevents acellular capillary formation. This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy.
doi_str_mv 10.2337/db10-0550
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3161322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A266455289</galeid><sourcerecordid>A266455289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-47d3155348446afb6231b26a0fc019b17fab7008921cbf2f3276f3cd2a1a66d23</originalsourceid><addsrcrecordid>eNp9kl2L1DAUhoso7rh64R-Qooh40TUfbdrcCMOou8LIwrgL3oXTNOlkySRj0y7Ohf_dhB1XRwbJRSDnOW_Ox5tlzzE6I5TW77oWowJVFXqQzTCnvKCk_vYwmyGESYFrXp9kT0K4QQixeB5nJwTXNeZ1Oct-Xq1Vfu2kd7fKjcY7sPnKW5V7nc-l6fKv27Vxvd_slDUOgsqNy1eqnywkOmErNZqU9sXIwYPrjd_CuN4l8IOBNkZlfjFtwOXgunzuzCbBvlM2PM0eabBBPdvfp9n1p49Xi4tieXn-eTFfFpKhZizKuqO4qmjZlCUD3TJCcUsYIC0R5i2uNbQ1Qg0nWLaa6Ng-01R2BDAw1hF6mr2_091O7UZ1MrY6gBXbIdYy7IQHIw4jzqxF728FxQxTkgTe7AUG_31SYRQbE6SyFpzyUxBNU1WM8gpH8uU_5I2fhjifIDgmDcacJ7lXd1APVgnjtI-_yiQp5oSxsqpIwyNVHKF65VQs0TulTXw-4M-O8PF0amPk0YS3BwmRGdWPsYcpxJbOl_8rZs9Kb63qlYjrWlwe1Y6mCGFQ-n7aGInkWpFcK5JrI_vi7_Xck79tGoHXewCCBKsHcNKEP1wZB19ySn8BxZvxcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912811992</pqid></control><display><type>article</type><title>The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Journals@Ovid Complete</source><creator>OPREANU, Madalina ; TIKHONENKO, Maria ; KOLESNICK, Richard ; GRANT, Maria B ; BUSIK, Julia V ; BOZACK, Svetlana ; LYDIC, Todd A ; REID, Gavin E ; MCSORLEY, Kelly M ; SOCHACKI, Andrew ; PEREZ, Gloria I ; ESSELMAN, Walter J ; KERN, Timothy</creator><creatorcontrib>OPREANU, Madalina ; TIKHONENKO, Maria ; KOLESNICK, Richard ; GRANT, Maria B ; BUSIK, Julia V ; BOZACK, Svetlana ; LYDIC, Todd A ; REID, Gavin E ; MCSORLEY, Kelly M ; SOCHACKI, Andrew ; PEREZ, Gloria I ; ESSELMAN, Walter J ; KERN, Timothy</creatorcontrib><description>Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study. Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies. We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α-induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM(-/-) mice or inhibition of ASM activity by DHA prevents acellular capillary formation. This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db10-0550</identifier><identifier>PMID: 21771974</identifier><identifier>CODEN: DIAEAZ</identifier><language>eng</language><publisher>Alexandria, VA: American Diabetes Association</publisher><subject>Angiogenesis ; Animals ; Antibodies ; Biological and medical sciences ; Capillaries - drug effects ; Capillaries - metabolism ; Capillaries - pathology ; Capillary Permeability - drug effects ; Cell culture ; Cells, Cultured ; Cholesterol ; Complications ; Cytokines ; Diabetes ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - metabolism ; Diabetes. Impaired glucose tolerance ; Diabetic retinopathy ; Diabetic Retinopathy - genetics ; Diabetic Retinopathy - metabolism ; Diabetic Retinopathy - pathology ; Docosahexaenoic Acids - pharmacology ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Eye and associated structures. Visual pathways and centers. Vision ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Profiling ; Genetic aspects ; Humans ; Inflammation ; Infrared imaging systems ; Kinases ; Male ; Medical sciences ; Mice ; Niemann-Pick disease ; Proteins ; Rats ; Rats, Sprague-Dawley ; Research design ; Retinal Vessels - drug effects ; Retinal Vessels - metabolism ; Retinal Vessels - pathology ; Risk factors ; Signal transduction ; Sphingomyelin Phosphodiesterase - genetics ; Sphingomyelin Phosphodiesterase - metabolism ; Tumor necrosis factor-TNF ; Vascular endothelial growth factor ; Vertebrates: nervous system and sense organs</subject><ispartof>Diabetes (New York, N.Y.), 2011-09, Vol.60 (9), p.2370-2378</ispartof><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 American Diabetes Association</rights><rights>COPYRIGHT 2011 American Diabetes Association</rights><rights>Copyright American Diabetes Association Sep 2011</rights><rights>2011 by the American Diabetes Association. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-47d3155348446afb6231b26a0fc019b17fab7008921cbf2f3276f3cd2a1a66d23</citedby><cites>FETCH-LOGICAL-c608t-47d3155348446afb6231b26a0fc019b17fab7008921cbf2f3276f3cd2a1a66d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161322/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161322/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24513493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21771974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>OPREANU, Madalina</creatorcontrib><creatorcontrib>TIKHONENKO, Maria</creatorcontrib><creatorcontrib>KOLESNICK, Richard</creatorcontrib><creatorcontrib>GRANT, Maria B</creatorcontrib><creatorcontrib>BUSIK, Julia V</creatorcontrib><creatorcontrib>BOZACK, Svetlana</creatorcontrib><creatorcontrib>LYDIC, Todd A</creatorcontrib><creatorcontrib>REID, Gavin E</creatorcontrib><creatorcontrib>MCSORLEY, Kelly M</creatorcontrib><creatorcontrib>SOCHACKI, Andrew</creatorcontrib><creatorcontrib>PEREZ, Gloria I</creatorcontrib><creatorcontrib>ESSELMAN, Walter J</creatorcontrib><creatorcontrib>KERN, Timothy</creatorcontrib><title>The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study. Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies. We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α-induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM(-/-) mice or inhibition of ASM activity by DHA prevents acellular capillary formation. This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biological and medical sciences</subject><subject>Capillaries - drug effects</subject><subject>Capillaries - metabolism</subject><subject>Capillaries - pathology</subject><subject>Capillary Permeability - drug effects</subject><subject>Cell culture</subject><subject>Cells, Cultured</subject><subject>Cholesterol</subject><subject>Complications</subject><subject>Cytokines</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Diabetic retinopathy</subject><subject>Diabetic Retinopathy - genetics</subject><subject>Diabetic Retinopathy - metabolism</subject><subject>Diabetic Retinopathy - pathology</subject><subject>Docosahexaenoic Acids - pharmacology</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Infrared imaging systems</subject><subject>Kinases</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Niemann-Pick disease</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Research design</subject><subject>Retinal Vessels - drug effects</subject><subject>Retinal Vessels - metabolism</subject><subject>Retinal Vessels - pathology</subject><subject>Risk factors</subject><subject>Signal transduction</subject><subject>Sphingomyelin Phosphodiesterase - genetics</subject><subject>Sphingomyelin Phosphodiesterase - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Vascular endothelial growth factor</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kl2L1DAUhoso7rh64R-Qooh40TUfbdrcCMOou8LIwrgL3oXTNOlkySRj0y7Ohf_dhB1XRwbJRSDnOW_Ox5tlzzE6I5TW77oWowJVFXqQzTCnvKCk_vYwmyGESYFrXp9kT0K4QQixeB5nJwTXNeZ1Oct-Xq1Vfu2kd7fKjcY7sPnKW5V7nc-l6fKv27Vxvd_slDUOgsqNy1eqnywkOmErNZqU9sXIwYPrjd_CuN4l8IOBNkZlfjFtwOXgunzuzCbBvlM2PM0eabBBPdvfp9n1p49Xi4tieXn-eTFfFpKhZizKuqO4qmjZlCUD3TJCcUsYIC0R5i2uNbQ1Qg0nWLaa6Ng-01R2BDAw1hF6mr2_091O7UZ1MrY6gBXbIdYy7IQHIw4jzqxF728FxQxTkgTe7AUG_31SYRQbE6SyFpzyUxBNU1WM8gpH8uU_5I2fhjifIDgmDcacJ7lXd1APVgnjtI-_yiQp5oSxsqpIwyNVHKF65VQs0TulTXw-4M-O8PF0amPk0YS3BwmRGdWPsYcpxJbOl_8rZs9Kb63qlYjrWlwe1Y6mCGFQ-n7aGInkWpFcK5JrI_vi7_Xck79tGoHXewCCBKsHcNKEP1wZB19ySn8BxZvxcA</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>OPREANU, Madalina</creator><creator>TIKHONENKO, Maria</creator><creator>KOLESNICK, Richard</creator><creator>GRANT, Maria B</creator><creator>BUSIK, Julia V</creator><creator>BOZACK, Svetlana</creator><creator>LYDIC, Todd A</creator><creator>REID, Gavin E</creator><creator>MCSORLEY, Kelly M</creator><creator>SOCHACKI, Andrew</creator><creator>PEREZ, Gloria I</creator><creator>ESSELMAN, Walter J</creator><creator>KERN, Timothy</creator><general>American Diabetes Association</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110901</creationdate><title>The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models</title><author>OPREANU, Madalina ; TIKHONENKO, Maria ; KOLESNICK, Richard ; GRANT, Maria B ; BUSIK, Julia V ; BOZACK, Svetlana ; LYDIC, Todd A ; REID, Gavin E ; MCSORLEY, Kelly M ; SOCHACKI, Andrew ; PEREZ, Gloria I ; ESSELMAN, Walter J ; KERN, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-47d3155348446afb6231b26a0fc019b17fab7008921cbf2f3276f3cd2a1a66d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biological and medical sciences</topic><topic>Capillaries - drug effects</topic><topic>Capillaries - metabolism</topic><topic>Capillaries - pathology</topic><topic>Capillary Permeability - drug effects</topic><topic>Cell culture</topic><topic>Cells, Cultured</topic><topic>Cholesterol</topic><topic>Complications</topic><topic>Cytokines</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Diabetic retinopathy</topic><topic>Diabetic Retinopathy - genetics</topic><topic>Diabetic Retinopathy - metabolism</topic><topic>Diabetic Retinopathy - pathology</topic><topic>Docosahexaenoic Acids - pharmacology</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Infrared imaging systems</topic><topic>Kinases</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Niemann-Pick disease</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Research design</topic><topic>Retinal Vessels - drug effects</topic><topic>Retinal Vessels - metabolism</topic><topic>Retinal Vessels - pathology</topic><topic>Risk factors</topic><topic>Signal transduction</topic><topic>Sphingomyelin Phosphodiesterase - genetics</topic><topic>Sphingomyelin Phosphodiesterase - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Vascular endothelial growth factor</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OPREANU, Madalina</creatorcontrib><creatorcontrib>TIKHONENKO, Maria</creatorcontrib><creatorcontrib>KOLESNICK, Richard</creatorcontrib><creatorcontrib>GRANT, Maria B</creatorcontrib><creatorcontrib>BUSIK, Julia V</creatorcontrib><creatorcontrib>BOZACK, Svetlana</creatorcontrib><creatorcontrib>LYDIC, Todd A</creatorcontrib><creatorcontrib>REID, Gavin E</creatorcontrib><creatorcontrib>MCSORLEY, Kelly M</creatorcontrib><creatorcontrib>SOCHACKI, Andrew</creatorcontrib><creatorcontrib>PEREZ, Gloria I</creatorcontrib><creatorcontrib>ESSELMAN, Walter J</creatorcontrib><creatorcontrib>KERN, Timothy</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OPREANU, Madalina</au><au>TIKHONENKO, Maria</au><au>KOLESNICK, Richard</au><au>GRANT, Maria B</au><au>BUSIK, Julia V</au><au>BOZACK, Svetlana</au><au>LYDIC, Todd A</au><au>REID, Gavin E</au><au>MCSORLEY, Kelly M</au><au>SOCHACKI, Andrew</au><au>PEREZ, Gloria I</au><au>ESSELMAN, Walter J</au><au>KERN, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>60</volume><issue>9</issue><spage>2370</spage><epage>2378</epage><pages>2370-2378</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><coden>DIAEAZ</coden><abstract>Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study. Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies. We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α-induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM(-/-) mice or inhibition of ASM activity by DHA prevents acellular capillary formation. This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy.</abstract><cop>Alexandria, VA</cop><pub>American Diabetes Association</pub><pmid>21771974</pmid><doi>10.2337/db10-0550</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2011-09, Vol.60 (9), p.2370-2378
issn 0012-1797
1939-327X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3161322
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Journals@Ovid Complete
subjects Angiogenesis
Animals
Antibodies
Biological and medical sciences
Capillaries - drug effects
Capillaries - metabolism
Capillaries - pathology
Capillary Permeability - drug effects
Cell culture
Cells, Cultured
Cholesterol
Complications
Cytokines
Diabetes
Diabetes Mellitus, Experimental - genetics
Diabetes Mellitus, Experimental - metabolism
Diabetes. Impaired glucose tolerance
Diabetic retinopathy
Diabetic Retinopathy - genetics
Diabetic Retinopathy - metabolism
Diabetic Retinopathy - pathology
Docosahexaenoic Acids - pharmacology
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Eye and associated structures. Visual pathways and centers. Vision
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Profiling
Genetic aspects
Humans
Inflammation
Infrared imaging systems
Kinases
Male
Medical sciences
Mice
Niemann-Pick disease
Proteins
Rats
Rats, Sprague-Dawley
Research design
Retinal Vessels - drug effects
Retinal Vessels - metabolism
Retinal Vessels - pathology
Risk factors
Signal transduction
Sphingomyelin Phosphodiesterase - genetics
Sphingomyelin Phosphodiesterase - metabolism
Tumor necrosis factor-TNF
Vascular endothelial growth factor
Vertebrates: nervous system and sense organs
title The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Unconventional%20Role%20of%20Acid%20Sphingomyelinase%20in%20Regulation%20of%20Retinal%20Microangiopathy%20in%20Diabetic%20Human%20and%20Animal%20Models&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=OPREANU,%20Madalina&rft.date=2011-09-01&rft.volume=60&rft.issue=9&rft.spage=2370&rft.epage=2378&rft.pages=2370-2378&rft.issn=0012-1797&rft.eissn=1939-327X&rft.coden=DIAEAZ&rft_id=info:doi/10.2337/db10-0550&rft_dat=%3Cgale_pubme%3EA266455289%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912811992&rft_id=info:pmid/21771974&rft_galeid=A266455289&rfr_iscdi=true