The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models
Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study. Protein and gene expression profiles were determin...
Gespeichert in:
Veröffentlicht in: | Diabetes (New York, N.Y.) N.Y.), 2011-09, Vol.60 (9), p.2370-2378 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2378 |
---|---|
container_issue | 9 |
container_start_page | 2370 |
container_title | Diabetes (New York, N.Y.) |
container_volume | 60 |
creator | OPREANU, Madalina TIKHONENKO, Maria KOLESNICK, Richard GRANT, Maria B BUSIK, Julia V BOZACK, Svetlana LYDIC, Todd A REID, Gavin E MCSORLEY, Kelly M SOCHACKI, Andrew PEREZ, Gloria I ESSELMAN, Walter J KERN, Timothy |
description | Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study.
Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies.
We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α-induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM(-/-) mice or inhibition of ASM activity by DHA prevents acellular capillary formation.
This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy. |
doi_str_mv | 10.2337/db10-0550 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3161322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A266455289</galeid><sourcerecordid>A266455289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-47d3155348446afb6231b26a0fc019b17fab7008921cbf2f3276f3cd2a1a66d23</originalsourceid><addsrcrecordid>eNp9kl2L1DAUhoso7rh64R-Qooh40TUfbdrcCMOou8LIwrgL3oXTNOlkySRj0y7Ohf_dhB1XRwbJRSDnOW_Ox5tlzzE6I5TW77oWowJVFXqQzTCnvKCk_vYwmyGESYFrXp9kT0K4QQixeB5nJwTXNeZ1Oct-Xq1Vfu2kd7fKjcY7sPnKW5V7nc-l6fKv27Vxvd_slDUOgsqNy1eqnywkOmErNZqU9sXIwYPrjd_CuN4l8IOBNkZlfjFtwOXgunzuzCbBvlM2PM0eabBBPdvfp9n1p49Xi4tieXn-eTFfFpKhZizKuqO4qmjZlCUD3TJCcUsYIC0R5i2uNbQ1Qg0nWLaa6Ng-01R2BDAw1hF6mr2_091O7UZ1MrY6gBXbIdYy7IQHIw4jzqxF728FxQxTkgTe7AUG_31SYRQbE6SyFpzyUxBNU1WM8gpH8uU_5I2fhjifIDgmDcacJ7lXd1APVgnjtI-_yiQp5oSxsqpIwyNVHKF65VQs0TulTXw-4M-O8PF0amPk0YS3BwmRGdWPsYcpxJbOl_8rZs9Kb63qlYjrWlwe1Y6mCGFQ-n7aGInkWpFcK5JrI_vi7_Xck79tGoHXewCCBKsHcNKEP1wZB19ySn8BxZvxcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912811992</pqid></control><display><type>article</type><title>The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Journals@Ovid Complete</source><creator>OPREANU, Madalina ; TIKHONENKO, Maria ; KOLESNICK, Richard ; GRANT, Maria B ; BUSIK, Julia V ; BOZACK, Svetlana ; LYDIC, Todd A ; REID, Gavin E ; MCSORLEY, Kelly M ; SOCHACKI, Andrew ; PEREZ, Gloria I ; ESSELMAN, Walter J ; KERN, Timothy</creator><creatorcontrib>OPREANU, Madalina ; TIKHONENKO, Maria ; KOLESNICK, Richard ; GRANT, Maria B ; BUSIK, Julia V ; BOZACK, Svetlana ; LYDIC, Todd A ; REID, Gavin E ; MCSORLEY, Kelly M ; SOCHACKI, Andrew ; PEREZ, Gloria I ; ESSELMAN, Walter J ; KERN, Timothy</creatorcontrib><description>Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study.
Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies.
We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α-induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM(-/-) mice or inhibition of ASM activity by DHA prevents acellular capillary formation.
This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db10-0550</identifier><identifier>PMID: 21771974</identifier><identifier>CODEN: DIAEAZ</identifier><language>eng</language><publisher>Alexandria, VA: American Diabetes Association</publisher><subject>Angiogenesis ; Animals ; Antibodies ; Biological and medical sciences ; Capillaries - drug effects ; Capillaries - metabolism ; Capillaries - pathology ; Capillary Permeability - drug effects ; Cell culture ; Cells, Cultured ; Cholesterol ; Complications ; Cytokines ; Diabetes ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - metabolism ; Diabetes. Impaired glucose tolerance ; Diabetic retinopathy ; Diabetic Retinopathy - genetics ; Diabetic Retinopathy - metabolism ; Diabetic Retinopathy - pathology ; Docosahexaenoic Acids - pharmacology ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Eye and associated structures. Visual pathways and centers. Vision ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Profiling ; Genetic aspects ; Humans ; Inflammation ; Infrared imaging systems ; Kinases ; Male ; Medical sciences ; Mice ; Niemann-Pick disease ; Proteins ; Rats ; Rats, Sprague-Dawley ; Research design ; Retinal Vessels - drug effects ; Retinal Vessels - metabolism ; Retinal Vessels - pathology ; Risk factors ; Signal transduction ; Sphingomyelin Phosphodiesterase - genetics ; Sphingomyelin Phosphodiesterase - metabolism ; Tumor necrosis factor-TNF ; Vascular endothelial growth factor ; Vertebrates: nervous system and sense organs</subject><ispartof>Diabetes (New York, N.Y.), 2011-09, Vol.60 (9), p.2370-2378</ispartof><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 American Diabetes Association</rights><rights>COPYRIGHT 2011 American Diabetes Association</rights><rights>Copyright American Diabetes Association Sep 2011</rights><rights>2011 by the American Diabetes Association. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-47d3155348446afb6231b26a0fc019b17fab7008921cbf2f3276f3cd2a1a66d23</citedby><cites>FETCH-LOGICAL-c608t-47d3155348446afb6231b26a0fc019b17fab7008921cbf2f3276f3cd2a1a66d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161322/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161322/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24513493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21771974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>OPREANU, Madalina</creatorcontrib><creatorcontrib>TIKHONENKO, Maria</creatorcontrib><creatorcontrib>KOLESNICK, Richard</creatorcontrib><creatorcontrib>GRANT, Maria B</creatorcontrib><creatorcontrib>BUSIK, Julia V</creatorcontrib><creatorcontrib>BOZACK, Svetlana</creatorcontrib><creatorcontrib>LYDIC, Todd A</creatorcontrib><creatorcontrib>REID, Gavin E</creatorcontrib><creatorcontrib>MCSORLEY, Kelly M</creatorcontrib><creatorcontrib>SOCHACKI, Andrew</creatorcontrib><creatorcontrib>PEREZ, Gloria I</creatorcontrib><creatorcontrib>ESSELMAN, Walter J</creatorcontrib><creatorcontrib>KERN, Timothy</creatorcontrib><title>The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study.
Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies.
We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α-induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM(-/-) mice or inhibition of ASM activity by DHA prevents acellular capillary formation.
This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biological and medical sciences</subject><subject>Capillaries - drug effects</subject><subject>Capillaries - metabolism</subject><subject>Capillaries - pathology</subject><subject>Capillary Permeability - drug effects</subject><subject>Cell culture</subject><subject>Cells, Cultured</subject><subject>Cholesterol</subject><subject>Complications</subject><subject>Cytokines</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Diabetic retinopathy</subject><subject>Diabetic Retinopathy - genetics</subject><subject>Diabetic Retinopathy - metabolism</subject><subject>Diabetic Retinopathy - pathology</subject><subject>Docosahexaenoic Acids - pharmacology</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Infrared imaging systems</subject><subject>Kinases</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Niemann-Pick disease</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Research design</subject><subject>Retinal Vessels - drug effects</subject><subject>Retinal Vessels - metabolism</subject><subject>Retinal Vessels - pathology</subject><subject>Risk factors</subject><subject>Signal transduction</subject><subject>Sphingomyelin Phosphodiesterase - genetics</subject><subject>Sphingomyelin Phosphodiesterase - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Vascular endothelial growth factor</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kl2L1DAUhoso7rh64R-Qooh40TUfbdrcCMOou8LIwrgL3oXTNOlkySRj0y7Ohf_dhB1XRwbJRSDnOW_Ox5tlzzE6I5TW77oWowJVFXqQzTCnvKCk_vYwmyGESYFrXp9kT0K4QQixeB5nJwTXNeZ1Oct-Xq1Vfu2kd7fKjcY7sPnKW5V7nc-l6fKv27Vxvd_slDUOgsqNy1eqnywkOmErNZqU9sXIwYPrjd_CuN4l8IOBNkZlfjFtwOXgunzuzCbBvlM2PM0eabBBPdvfp9n1p49Xi4tieXn-eTFfFpKhZizKuqO4qmjZlCUD3TJCcUsYIC0R5i2uNbQ1Qg0nWLaa6Ng-01R2BDAw1hF6mr2_091O7UZ1MrY6gBXbIdYy7IQHIw4jzqxF728FxQxTkgTe7AUG_31SYRQbE6SyFpzyUxBNU1WM8gpH8uU_5I2fhjifIDgmDcacJ7lXd1APVgnjtI-_yiQp5oSxsqpIwyNVHKF65VQs0TulTXw-4M-O8PF0amPk0YS3BwmRGdWPsYcpxJbOl_8rZs9Kb63qlYjrWlwe1Y6mCGFQ-n7aGInkWpFcK5JrI_vi7_Xck79tGoHXewCCBKsHcNKEP1wZB19ySn8BxZvxcA</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>OPREANU, Madalina</creator><creator>TIKHONENKO, Maria</creator><creator>KOLESNICK, Richard</creator><creator>GRANT, Maria B</creator><creator>BUSIK, Julia V</creator><creator>BOZACK, Svetlana</creator><creator>LYDIC, Todd A</creator><creator>REID, Gavin E</creator><creator>MCSORLEY, Kelly M</creator><creator>SOCHACKI, Andrew</creator><creator>PEREZ, Gloria I</creator><creator>ESSELMAN, Walter J</creator><creator>KERN, Timothy</creator><general>American Diabetes Association</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110901</creationdate><title>The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models</title><author>OPREANU, Madalina ; TIKHONENKO, Maria ; KOLESNICK, Richard ; GRANT, Maria B ; BUSIK, Julia V ; BOZACK, Svetlana ; LYDIC, Todd A ; REID, Gavin E ; MCSORLEY, Kelly M ; SOCHACKI, Andrew ; PEREZ, Gloria I ; ESSELMAN, Walter J ; KERN, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-47d3155348446afb6231b26a0fc019b17fab7008921cbf2f3276f3cd2a1a66d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biological and medical sciences</topic><topic>Capillaries - drug effects</topic><topic>Capillaries - metabolism</topic><topic>Capillaries - pathology</topic><topic>Capillary Permeability - drug effects</topic><topic>Cell culture</topic><topic>Cells, Cultured</topic><topic>Cholesterol</topic><topic>Complications</topic><topic>Cytokines</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Diabetic retinopathy</topic><topic>Diabetic Retinopathy - genetics</topic><topic>Diabetic Retinopathy - metabolism</topic><topic>Diabetic Retinopathy - pathology</topic><topic>Docosahexaenoic Acids - pharmacology</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Infrared imaging systems</topic><topic>Kinases</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Niemann-Pick disease</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Research design</topic><topic>Retinal Vessels - drug effects</topic><topic>Retinal Vessels - metabolism</topic><topic>Retinal Vessels - pathology</topic><topic>Risk factors</topic><topic>Signal transduction</topic><topic>Sphingomyelin Phosphodiesterase - genetics</topic><topic>Sphingomyelin Phosphodiesterase - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Vascular endothelial growth factor</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OPREANU, Madalina</creatorcontrib><creatorcontrib>TIKHONENKO, Maria</creatorcontrib><creatorcontrib>KOLESNICK, Richard</creatorcontrib><creatorcontrib>GRANT, Maria B</creatorcontrib><creatorcontrib>BUSIK, Julia V</creatorcontrib><creatorcontrib>BOZACK, Svetlana</creatorcontrib><creatorcontrib>LYDIC, Todd A</creatorcontrib><creatorcontrib>REID, Gavin E</creatorcontrib><creatorcontrib>MCSORLEY, Kelly M</creatorcontrib><creatorcontrib>SOCHACKI, Andrew</creatorcontrib><creatorcontrib>PEREZ, Gloria I</creatorcontrib><creatorcontrib>ESSELMAN, Walter J</creatorcontrib><creatorcontrib>KERN, Timothy</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OPREANU, Madalina</au><au>TIKHONENKO, Maria</au><au>KOLESNICK, Richard</au><au>GRANT, Maria B</au><au>BUSIK, Julia V</au><au>BOZACK, Svetlana</au><au>LYDIC, Todd A</au><au>REID, Gavin E</au><au>MCSORLEY, Kelly M</au><au>SOCHACKI, Andrew</au><au>PEREZ, Gloria I</au><au>ESSELMAN, Walter J</au><au>KERN, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>60</volume><issue>9</issue><spage>2370</spage><epage>2378</epage><pages>2370-2378</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><coden>DIAEAZ</coden><abstract>Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study.
Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies.
We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α-induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM(-/-) mice or inhibition of ASM activity by DHA prevents acellular capillary formation.
This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy.</abstract><cop>Alexandria, VA</cop><pub>American Diabetes Association</pub><pmid>21771974</pmid><doi>10.2337/db10-0550</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1797 |
ispartof | Diabetes (New York, N.Y.), 2011-09, Vol.60 (9), p.2370-2378 |
issn | 0012-1797 1939-327X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3161322 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Journals@Ovid Complete |
subjects | Angiogenesis Animals Antibodies Biological and medical sciences Capillaries - drug effects Capillaries - metabolism Capillaries - pathology Capillary Permeability - drug effects Cell culture Cells, Cultured Cholesterol Complications Cytokines Diabetes Diabetes Mellitus, Experimental - genetics Diabetes Mellitus, Experimental - metabolism Diabetes. Impaired glucose tolerance Diabetic retinopathy Diabetic Retinopathy - genetics Diabetic Retinopathy - metabolism Diabetic Retinopathy - pathology Docosahexaenoic Acids - pharmacology Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Eye and associated structures. Visual pathways and centers. Vision Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Profiling Genetic aspects Humans Inflammation Infrared imaging systems Kinases Male Medical sciences Mice Niemann-Pick disease Proteins Rats Rats, Sprague-Dawley Research design Retinal Vessels - drug effects Retinal Vessels - metabolism Retinal Vessels - pathology Risk factors Signal transduction Sphingomyelin Phosphodiesterase - genetics Sphingomyelin Phosphodiesterase - metabolism Tumor necrosis factor-TNF Vascular endothelial growth factor Vertebrates: nervous system and sense organs |
title | The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Unconventional%20Role%20of%20Acid%20Sphingomyelinase%20in%20Regulation%20of%20Retinal%20Microangiopathy%20in%20Diabetic%20Human%20and%20Animal%20Models&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=OPREANU,%20Madalina&rft.date=2011-09-01&rft.volume=60&rft.issue=9&rft.spage=2370&rft.epage=2378&rft.pages=2370-2378&rft.issn=0012-1797&rft.eissn=1939-327X&rft.coden=DIAEAZ&rft_id=info:doi/10.2337/db10-0550&rft_dat=%3Cgale_pubme%3EA266455289%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912811992&rft_id=info:pmid/21771974&rft_galeid=A266455289&rfr_iscdi=true |