In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging

In vitro experiments of a biomaterial's degradability rarely predict its in vivo behaviour. It is now shown that tracking the hydrolytic and enzymatic erosion of model materials by non-invasive fluorescence imaging allows the prediction of in vivo erosion from in vitro data. The approach should...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2011-09, Vol.10 (9), p.890-890
Hauptverfasser: Artzi, Natalie, Oliva, Nuria, Puron, Cristina, Shitreet, Sagi, Artzi, Shay, bon Ramos, Adriana, Groothuis, Adam, Sahagian, Gary, Edelman, Elazer R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 890
container_issue 9
container_start_page 890
container_title Nature materials
container_volume 10
creator Artzi, Natalie
Oliva, Nuria
Puron, Cristina
Shitreet, Sagi
Artzi, Shay
bon Ramos, Adriana
Groothuis, Adam
Sahagian, Gary
Edelman, Elazer R.
description In vitro experiments of a biomaterial's degradability rarely predict its in vivo behaviour. It is now shown that tracking the hydrolytic and enzymatic erosion of model materials by non-invasive fluorescence imaging allows the prediction of in vivo erosion from in vitro data. The approach should enable rapid screening of erodable biomaterials. The design of erodible biomaterials relies on the ability to program the in vivo retention time, which necessitates real-time monitoring of erosion. However, in vivo performance cannot always be predicted by traditional determination of in vitro erosion 1 , 2 , and standard methods sacrifice samples or animals 3 , preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow in vivo material-mass loss to model the degradation of materials hydrolytically (PEG:dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates in vivo and in vitro correlated, enabling the prediction of in vivo erosion of new material formulations from in vitro data. Collagen in vivo erosion was used to infer physiologic in vitro conditions that mimic erosive in vivo environments. This approach enables rapid in vitro screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.
doi_str_mv 10.1038/nmat3095
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3160718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3088754651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-2efcbffcf05bdf42f9aae2aa704fb2ec45fb9891473f198e7d95e264f09a80683</originalsourceid><addsrcrecordid>eNqFkkFrFjEQhhex2FoFf4EEPKiH1Uw2ySYXQYraQsGLnkN2d7Km3S-pye6C_94s_VprD-0pA_PwzryTt6peAf0AtFEfw87ODdXiSXUEvJU1l5I-3dcAjB1Wz3O-oJSBEPJZdchAiVa26qi6PAtk9WskNgzEb_WcIpmT7S99GEl0BFPMPoat2fk44JjsYLsJSZmJydspkyVvbIih9mG12a9I3LTEhLnH0CPxOzsW4kV14AqOL_fvcfXz65cfJ6f1-fdvZyefz-ueaz3XDF3fOdc7KrrBcea0tcisbSl3HcOeC9dppYu5xoFW2A5aIJPcUW0Vlao5rj5d614t3Q6HskPxM5mrVPZIf0y03vzfCf6XGeNqGpC0hU3g7V4gxd8L5tnsfLEyTTZgXLJRSlAhGraR7x4koRWKcWhAPI5KJRRo0UJB39xDL-KSQrmZAd5oAE6V_CfYlx_KCd2tQ6Bmi4W5iUVBX9-9yC14k4MCvL8GcmmFEdOdiffF_gLwn8M4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439114086</pqid></control><display><type>article</type><title>In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Journals</source><creator>Artzi, Natalie ; Oliva, Nuria ; Puron, Cristina ; Shitreet, Sagi ; Artzi, Shay ; bon Ramos, Adriana ; Groothuis, Adam ; Sahagian, Gary ; Edelman, Elazer R.</creator><creatorcontrib>Artzi, Natalie ; Oliva, Nuria ; Puron, Cristina ; Shitreet, Sagi ; Artzi, Shay ; bon Ramos, Adriana ; Groothuis, Adam ; Sahagian, Gary ; Edelman, Elazer R.</creatorcontrib><description>In vitro experiments of a biomaterial's degradability rarely predict its in vivo behaviour. It is now shown that tracking the hydrolytic and enzymatic erosion of model materials by non-invasive fluorescence imaging allows the prediction of in vivo erosion from in vitro data. The approach should enable rapid screening of erodable biomaterials. The design of erodible biomaterials relies on the ability to program the in vivo retention time, which necessitates real-time monitoring of erosion. However, in vivo performance cannot always be predicted by traditional determination of in vitro erosion 1 , 2 , and standard methods sacrifice samples or animals 3 , preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow in vivo material-mass loss to model the degradation of materials hydrolytically (PEG:dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates in vivo and in vitro correlated, enabling the prediction of in vivo erosion of new material formulations from in vitro data. Collagen in vivo erosion was used to infer physiologic in vitro conditions that mimic erosive in vivo environments. This approach enables rapid in vitro screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3095</identifier><identifier>PMID: 21857678</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/54/990 ; 639/301/930/12 ; Animals ; Biocompatibility ; Biocompatible Materials - chemistry ; Biocompatible Materials - metabolism ; Biodegradable materials ; Biodegradation ; Biomaterials ; Biomedical materials ; Chemistry and Materials Science ; Collagen Type II - metabolism ; Condensed Matter Physics ; Dextrans - chemistry ; Erosion ; Erosion rates ; Fluorescein - chemistry ; Fluorescence ; Hydrogels - chemistry ; Imaging ; In vitro testing ; In vivo testing ; In vivo tests ; Kinetics ; letter ; Materials Science ; Mathematical models ; Mice ; Molecular Imaging - methods ; Nanotechnology ; Optical and Electronic Materials ; Polyethylene Glycols - chemistry ; Retention time ; Scientific imaging ; Spectrometry, Fluorescence - methods ; Surgical implants</subject><ispartof>Nature materials, 2011-09, Vol.10 (9), p.890-890</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Sep 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-2efcbffcf05bdf42f9aae2aa704fb2ec45fb9891473f198e7d95e264f09a80683</citedby><cites>FETCH-LOGICAL-c499t-2efcbffcf05bdf42f9aae2aa704fb2ec45fb9891473f198e7d95e264f09a80683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3095$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3095$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21857678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Artzi, Natalie</creatorcontrib><creatorcontrib>Oliva, Nuria</creatorcontrib><creatorcontrib>Puron, Cristina</creatorcontrib><creatorcontrib>Shitreet, Sagi</creatorcontrib><creatorcontrib>Artzi, Shay</creatorcontrib><creatorcontrib>bon Ramos, Adriana</creatorcontrib><creatorcontrib>Groothuis, Adam</creatorcontrib><creatorcontrib>Sahagian, Gary</creatorcontrib><creatorcontrib>Edelman, Elazer R.</creatorcontrib><title>In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>In vitro experiments of a biomaterial's degradability rarely predict its in vivo behaviour. It is now shown that tracking the hydrolytic and enzymatic erosion of model materials by non-invasive fluorescence imaging allows the prediction of in vivo erosion from in vitro data. The approach should enable rapid screening of erodable biomaterials. The design of erodible biomaterials relies on the ability to program the in vivo retention time, which necessitates real-time monitoring of erosion. However, in vivo performance cannot always be predicted by traditional determination of in vitro erosion 1 , 2 , and standard methods sacrifice samples or animals 3 , preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow in vivo material-mass loss to model the degradation of materials hydrolytically (PEG:dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates in vivo and in vitro correlated, enabling the prediction of in vivo erosion of new material formulations from in vitro data. Collagen in vivo erosion was used to infer physiologic in vitro conditions that mimic erosive in vivo environments. This approach enables rapid in vitro screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.</description><subject>639/301/54/990</subject><subject>639/301/930/12</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - metabolism</subject><subject>Biodegradable materials</subject><subject>Biodegradation</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Chemistry and Materials Science</subject><subject>Collagen Type II - metabolism</subject><subject>Condensed Matter Physics</subject><subject>Dextrans - chemistry</subject><subject>Erosion</subject><subject>Erosion rates</subject><subject>Fluorescein - chemistry</subject><subject>Fluorescence</subject><subject>Hydrogels - chemistry</subject><subject>Imaging</subject><subject>In vitro testing</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>Kinetics</subject><subject>letter</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mice</subject><subject>Molecular Imaging - methods</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Retention time</subject><subject>Scientific imaging</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Surgical implants</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkkFrFjEQhhex2FoFf4EEPKiH1Uw2ySYXQYraQsGLnkN2d7Km3S-pye6C_94s_VprD-0pA_PwzryTt6peAf0AtFEfw87ODdXiSXUEvJU1l5I-3dcAjB1Wz3O-oJSBEPJZdchAiVa26qi6PAtk9WskNgzEb_WcIpmT7S99GEl0BFPMPoat2fk44JjsYLsJSZmJydspkyVvbIih9mG12a9I3LTEhLnH0CPxOzsW4kV14AqOL_fvcfXz65cfJ6f1-fdvZyefz-ueaz3XDF3fOdc7KrrBcea0tcisbSl3HcOeC9dppYu5xoFW2A5aIJPcUW0Vlao5rj5d614t3Q6HskPxM5mrVPZIf0y03vzfCf6XGeNqGpC0hU3g7V4gxd8L5tnsfLEyTTZgXLJRSlAhGraR7x4koRWKcWhAPI5KJRRo0UJB39xDL-KSQrmZAd5oAE6V_CfYlx_KCd2tQ6Bmi4W5iUVBX9-9yC14k4MCvL8GcmmFEdOdiffF_gLwn8M4</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Artzi, Natalie</creator><creator>Oliva, Nuria</creator><creator>Puron, Cristina</creator><creator>Shitreet, Sagi</creator><creator>Artzi, Shay</creator><creator>bon Ramos, Adriana</creator><creator>Groothuis, Adam</creator><creator>Sahagian, Gary</creator><creator>Edelman, Elazer R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7T7</scope><scope>C1K</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110901</creationdate><title>In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging</title><author>Artzi, Natalie ; Oliva, Nuria ; Puron, Cristina ; Shitreet, Sagi ; Artzi, Shay ; bon Ramos, Adriana ; Groothuis, Adam ; Sahagian, Gary ; Edelman, Elazer R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-2efcbffcf05bdf42f9aae2aa704fb2ec45fb9891473f198e7d95e264f09a80683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/54/990</topic><topic>639/301/930/12</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - metabolism</topic><topic>Biodegradable materials</topic><topic>Biodegradation</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Chemistry and Materials Science</topic><topic>Collagen Type II - metabolism</topic><topic>Condensed Matter Physics</topic><topic>Dextrans - chemistry</topic><topic>Erosion</topic><topic>Erosion rates</topic><topic>Fluorescein - chemistry</topic><topic>Fluorescence</topic><topic>Hydrogels - chemistry</topic><topic>Imaging</topic><topic>In vitro testing</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>Kinetics</topic><topic>letter</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mice</topic><topic>Molecular Imaging - methods</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Retention time</topic><topic>Scientific imaging</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artzi, Natalie</creatorcontrib><creatorcontrib>Oliva, Nuria</creatorcontrib><creatorcontrib>Puron, Cristina</creatorcontrib><creatorcontrib>Shitreet, Sagi</creatorcontrib><creatorcontrib>Artzi, Shay</creatorcontrib><creatorcontrib>bon Ramos, Adriana</creatorcontrib><creatorcontrib>Groothuis, Adam</creatorcontrib><creatorcontrib>Sahagian, Gary</creatorcontrib><creatorcontrib>Edelman, Elazer R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artzi, Natalie</au><au>Oliva, Nuria</au><au>Puron, Cristina</au><au>Shitreet, Sagi</au><au>Artzi, Shay</au><au>bon Ramos, Adriana</au><au>Groothuis, Adam</au><au>Sahagian, Gary</au><au>Edelman, Elazer R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>10</volume><issue>9</issue><spage>890</spage><epage>890</epage><pages>890-890</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>In vitro experiments of a biomaterial's degradability rarely predict its in vivo behaviour. It is now shown that tracking the hydrolytic and enzymatic erosion of model materials by non-invasive fluorescence imaging allows the prediction of in vivo erosion from in vitro data. The approach should enable rapid screening of erodable biomaterials. The design of erodible biomaterials relies on the ability to program the in vivo retention time, which necessitates real-time monitoring of erosion. However, in vivo performance cannot always be predicted by traditional determination of in vitro erosion 1 , 2 , and standard methods sacrifice samples or animals 3 , preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow in vivo material-mass loss to model the degradation of materials hydrolytically (PEG:dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates in vivo and in vitro correlated, enabling the prediction of in vivo erosion of new material formulations from in vitro data. Collagen in vivo erosion was used to infer physiologic in vitro conditions that mimic erosive in vivo environments. This approach enables rapid in vitro screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21857678</pmid><doi>10.1038/nmat3095</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2011-09, Vol.10 (9), p.890-890
issn 1476-1122
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3160718
source MEDLINE; Nature; SpringerNature Journals
subjects 639/301/54/990
639/301/930/12
Animals
Biocompatibility
Biocompatible Materials - chemistry
Biocompatible Materials - metabolism
Biodegradable materials
Biodegradation
Biomaterials
Biomedical materials
Chemistry and Materials Science
Collagen Type II - metabolism
Condensed Matter Physics
Dextrans - chemistry
Erosion
Erosion rates
Fluorescein - chemistry
Fluorescence
Hydrogels - chemistry
Imaging
In vitro testing
In vivo testing
In vivo tests
Kinetics
letter
Materials Science
Mathematical models
Mice
Molecular Imaging - methods
Nanotechnology
Optical and Electronic Materials
Polyethylene Glycols - chemistry
Retention time
Scientific imaging
Spectrometry, Fluorescence - methods
Surgical implants
title In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20and%20in%20vitro%20tracking%20of%20erosion%20in%20biodegradable%20materials%20using%20non-invasive%20fluorescence%20imaging&rft.jtitle=Nature%20materials&rft.au=Artzi,%20Natalie&rft.date=2011-09-01&rft.volume=10&rft.issue=9&rft.spage=890&rft.epage=890&rft.pages=890-890&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3095&rft_dat=%3Cproquest_pubme%3E3088754651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439114086&rft_id=info:pmid/21857678&rfr_iscdi=true