In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging
In vitro experiments of a biomaterial's degradability rarely predict its in vivo behaviour. It is now shown that tracking the hydrolytic and enzymatic erosion of model materials by non-invasive fluorescence imaging allows the prediction of in vivo erosion from in vitro data. The approach should...
Gespeichert in:
Veröffentlicht in: | Nature materials 2011-09, Vol.10 (9), p.890-890 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 890 |
---|---|
container_issue | 9 |
container_start_page | 890 |
container_title | Nature materials |
container_volume | 10 |
creator | Artzi, Natalie Oliva, Nuria Puron, Cristina Shitreet, Sagi Artzi, Shay bon Ramos, Adriana Groothuis, Adam Sahagian, Gary Edelman, Elazer R. |
description | In vitro
experiments of a biomaterial's degradability rarely predict its
in vivo
behaviour. It is now shown that tracking the hydrolytic and enzymatic erosion of model materials by non-invasive fluorescence imaging allows the prediction of
in vivo
erosion from
in vitro
data. The approach should enable rapid screening of erodable biomaterials.
The design of erodible biomaterials relies on the ability to program the
in vivo
retention time, which necessitates real-time monitoring of erosion. However,
in vivo
performance cannot always be predicted by traditional determination of
in vitro
erosion
1
,
2
, and standard methods sacrifice samples or animals
3
, preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow
in vivo
material-mass loss to model the degradation of materials hydrolytically (PEG:dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates
in vivo
and
in vitro
correlated, enabling the prediction of
in vivo
erosion of new material formulations from
in vitro
data. Collagen
in vivo
erosion was used to infer physiologic
in vitro
conditions that mimic erosive
in vivo
environments. This approach enables rapid
in vitro
screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations. |
doi_str_mv | 10.1038/nmat3095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3160718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3088754651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-2efcbffcf05bdf42f9aae2aa704fb2ec45fb9891473f198e7d95e264f09a80683</originalsourceid><addsrcrecordid>eNqFkkFrFjEQhhex2FoFf4EEPKiH1Uw2ySYXQYraQsGLnkN2d7Km3S-pye6C_94s_VprD-0pA_PwzryTt6peAf0AtFEfw87ODdXiSXUEvJU1l5I-3dcAjB1Wz3O-oJSBEPJZdchAiVa26qi6PAtk9WskNgzEb_WcIpmT7S99GEl0BFPMPoat2fk44JjsYLsJSZmJydspkyVvbIih9mG12a9I3LTEhLnH0CPxOzsW4kV14AqOL_fvcfXz65cfJ6f1-fdvZyefz-ueaz3XDF3fOdc7KrrBcea0tcisbSl3HcOeC9dppYu5xoFW2A5aIJPcUW0Vlao5rj5d614t3Q6HskPxM5mrVPZIf0y03vzfCf6XGeNqGpC0hU3g7V4gxd8L5tnsfLEyTTZgXLJRSlAhGraR7x4koRWKcWhAPI5KJRRo0UJB39xDL-KSQrmZAd5oAE6V_CfYlx_KCd2tQ6Bmi4W5iUVBX9-9yC14k4MCvL8GcmmFEdOdiffF_gLwn8M4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439114086</pqid></control><display><type>article</type><title>In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Journals</source><creator>Artzi, Natalie ; Oliva, Nuria ; Puron, Cristina ; Shitreet, Sagi ; Artzi, Shay ; bon Ramos, Adriana ; Groothuis, Adam ; Sahagian, Gary ; Edelman, Elazer R.</creator><creatorcontrib>Artzi, Natalie ; Oliva, Nuria ; Puron, Cristina ; Shitreet, Sagi ; Artzi, Shay ; bon Ramos, Adriana ; Groothuis, Adam ; Sahagian, Gary ; Edelman, Elazer R.</creatorcontrib><description>In vitro
experiments of a biomaterial's degradability rarely predict its
in vivo
behaviour. It is now shown that tracking the hydrolytic and enzymatic erosion of model materials by non-invasive fluorescence imaging allows the prediction of
in vivo
erosion from
in vitro
data. The approach should enable rapid screening of erodable biomaterials.
The design of erodible biomaterials relies on the ability to program the
in vivo
retention time, which necessitates real-time monitoring of erosion. However,
in vivo
performance cannot always be predicted by traditional determination of
in vitro
erosion
1
,
2
, and standard methods sacrifice samples or animals
3
, preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow
in vivo
material-mass loss to model the degradation of materials hydrolytically (PEG:dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates
in vivo
and
in vitro
correlated, enabling the prediction of
in vivo
erosion of new material formulations from
in vitro
data. Collagen
in vivo
erosion was used to infer physiologic
in vitro
conditions that mimic erosive
in vivo
environments. This approach enables rapid
in vitro
screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3095</identifier><identifier>PMID: 21857678</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/54/990 ; 639/301/930/12 ; Animals ; Biocompatibility ; Biocompatible Materials - chemistry ; Biocompatible Materials - metabolism ; Biodegradable materials ; Biodegradation ; Biomaterials ; Biomedical materials ; Chemistry and Materials Science ; Collagen Type II - metabolism ; Condensed Matter Physics ; Dextrans - chemistry ; Erosion ; Erosion rates ; Fluorescein - chemistry ; Fluorescence ; Hydrogels - chemistry ; Imaging ; In vitro testing ; In vivo testing ; In vivo tests ; Kinetics ; letter ; Materials Science ; Mathematical models ; Mice ; Molecular Imaging - methods ; Nanotechnology ; Optical and Electronic Materials ; Polyethylene Glycols - chemistry ; Retention time ; Scientific imaging ; Spectrometry, Fluorescence - methods ; Surgical implants</subject><ispartof>Nature materials, 2011-09, Vol.10 (9), p.890-890</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Sep 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-2efcbffcf05bdf42f9aae2aa704fb2ec45fb9891473f198e7d95e264f09a80683</citedby><cites>FETCH-LOGICAL-c499t-2efcbffcf05bdf42f9aae2aa704fb2ec45fb9891473f198e7d95e264f09a80683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3095$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3095$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21857678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Artzi, Natalie</creatorcontrib><creatorcontrib>Oliva, Nuria</creatorcontrib><creatorcontrib>Puron, Cristina</creatorcontrib><creatorcontrib>Shitreet, Sagi</creatorcontrib><creatorcontrib>Artzi, Shay</creatorcontrib><creatorcontrib>bon Ramos, Adriana</creatorcontrib><creatorcontrib>Groothuis, Adam</creatorcontrib><creatorcontrib>Sahagian, Gary</creatorcontrib><creatorcontrib>Edelman, Elazer R.</creatorcontrib><title>In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>In vitro
experiments of a biomaterial's degradability rarely predict its
in vivo
behaviour. It is now shown that tracking the hydrolytic and enzymatic erosion of model materials by non-invasive fluorescence imaging allows the prediction of
in vivo
erosion from
in vitro
data. The approach should enable rapid screening of erodable biomaterials.
The design of erodible biomaterials relies on the ability to program the
in vivo
retention time, which necessitates real-time monitoring of erosion. However,
in vivo
performance cannot always be predicted by traditional determination of
in vitro
erosion
1
,
2
, and standard methods sacrifice samples or animals
3
, preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow
in vivo
material-mass loss to model the degradation of materials hydrolytically (PEG:dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates
in vivo
and
in vitro
correlated, enabling the prediction of
in vivo
erosion of new material formulations from
in vitro
data. Collagen
in vivo
erosion was used to infer physiologic
in vitro
conditions that mimic erosive
in vivo
environments. This approach enables rapid
in vitro
screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.</description><subject>639/301/54/990</subject><subject>639/301/930/12</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - metabolism</subject><subject>Biodegradable materials</subject><subject>Biodegradation</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Chemistry and Materials Science</subject><subject>Collagen Type II - metabolism</subject><subject>Condensed Matter Physics</subject><subject>Dextrans - chemistry</subject><subject>Erosion</subject><subject>Erosion rates</subject><subject>Fluorescein - chemistry</subject><subject>Fluorescence</subject><subject>Hydrogels - chemistry</subject><subject>Imaging</subject><subject>In vitro testing</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>Kinetics</subject><subject>letter</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mice</subject><subject>Molecular Imaging - methods</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Retention time</subject><subject>Scientific imaging</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Surgical implants</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkkFrFjEQhhex2FoFf4EEPKiH1Uw2ySYXQYraQsGLnkN2d7Km3S-pye6C_94s_VprD-0pA_PwzryTt6peAf0AtFEfw87ODdXiSXUEvJU1l5I-3dcAjB1Wz3O-oJSBEPJZdchAiVa26qi6PAtk9WskNgzEb_WcIpmT7S99GEl0BFPMPoat2fk44JjsYLsJSZmJydspkyVvbIih9mG12a9I3LTEhLnH0CPxOzsW4kV14AqOL_fvcfXz65cfJ6f1-fdvZyefz-ueaz3XDF3fOdc7KrrBcea0tcisbSl3HcOeC9dppYu5xoFW2A5aIJPcUW0Vlao5rj5d614t3Q6HskPxM5mrVPZIf0y03vzfCf6XGeNqGpC0hU3g7V4gxd8L5tnsfLEyTTZgXLJRSlAhGraR7x4koRWKcWhAPI5KJRRo0UJB39xDL-KSQrmZAd5oAE6V_CfYlx_KCd2tQ6Bmi4W5iUVBX9-9yC14k4MCvL8GcmmFEdOdiffF_gLwn8M4</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Artzi, Natalie</creator><creator>Oliva, Nuria</creator><creator>Puron, Cristina</creator><creator>Shitreet, Sagi</creator><creator>Artzi, Shay</creator><creator>bon Ramos, Adriana</creator><creator>Groothuis, Adam</creator><creator>Sahagian, Gary</creator><creator>Edelman, Elazer R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7T7</scope><scope>C1K</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110901</creationdate><title>In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging</title><author>Artzi, Natalie ; Oliva, Nuria ; Puron, Cristina ; Shitreet, Sagi ; Artzi, Shay ; bon Ramos, Adriana ; Groothuis, Adam ; Sahagian, Gary ; Edelman, Elazer R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-2efcbffcf05bdf42f9aae2aa704fb2ec45fb9891473f198e7d95e264f09a80683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/54/990</topic><topic>639/301/930/12</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - metabolism</topic><topic>Biodegradable materials</topic><topic>Biodegradation</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Chemistry and Materials Science</topic><topic>Collagen Type II - metabolism</topic><topic>Condensed Matter Physics</topic><topic>Dextrans - chemistry</topic><topic>Erosion</topic><topic>Erosion rates</topic><topic>Fluorescein - chemistry</topic><topic>Fluorescence</topic><topic>Hydrogels - chemistry</topic><topic>Imaging</topic><topic>In vitro testing</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>Kinetics</topic><topic>letter</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mice</topic><topic>Molecular Imaging - methods</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Retention time</topic><topic>Scientific imaging</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artzi, Natalie</creatorcontrib><creatorcontrib>Oliva, Nuria</creatorcontrib><creatorcontrib>Puron, Cristina</creatorcontrib><creatorcontrib>Shitreet, Sagi</creatorcontrib><creatorcontrib>Artzi, Shay</creatorcontrib><creatorcontrib>bon Ramos, Adriana</creatorcontrib><creatorcontrib>Groothuis, Adam</creatorcontrib><creatorcontrib>Sahagian, Gary</creatorcontrib><creatorcontrib>Edelman, Elazer R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artzi, Natalie</au><au>Oliva, Nuria</au><au>Puron, Cristina</au><au>Shitreet, Sagi</au><au>Artzi, Shay</au><au>bon Ramos, Adriana</au><au>Groothuis, Adam</au><au>Sahagian, Gary</au><au>Edelman, Elazer R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>10</volume><issue>9</issue><spage>890</spage><epage>890</epage><pages>890-890</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>In vitro
experiments of a biomaterial's degradability rarely predict its
in vivo
behaviour. It is now shown that tracking the hydrolytic and enzymatic erosion of model materials by non-invasive fluorescence imaging allows the prediction of
in vivo
erosion from
in vitro
data. The approach should enable rapid screening of erodable biomaterials.
The design of erodible biomaterials relies on the ability to program the
in vivo
retention time, which necessitates real-time monitoring of erosion. However,
in vivo
performance cannot always be predicted by traditional determination of
in vitro
erosion
1
,
2
, and standard methods sacrifice samples or animals
3
, preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow
in vivo
material-mass loss to model the degradation of materials hydrolytically (PEG:dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates
in vivo
and
in vitro
correlated, enabling the prediction of
in vivo
erosion of new material formulations from
in vitro
data. Collagen
in vivo
erosion was used to infer physiologic
in vitro
conditions that mimic erosive
in vivo
environments. This approach enables rapid
in vitro
screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21857678</pmid><doi>10.1038/nmat3095</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2011-09, Vol.10 (9), p.890-890 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3160718 |
source | MEDLINE; Nature; SpringerNature Journals |
subjects | 639/301/54/990 639/301/930/12 Animals Biocompatibility Biocompatible Materials - chemistry Biocompatible Materials - metabolism Biodegradable materials Biodegradation Biomaterials Biomedical materials Chemistry and Materials Science Collagen Type II - metabolism Condensed Matter Physics Dextrans - chemistry Erosion Erosion rates Fluorescein - chemistry Fluorescence Hydrogels - chemistry Imaging In vitro testing In vivo testing In vivo tests Kinetics letter Materials Science Mathematical models Mice Molecular Imaging - methods Nanotechnology Optical and Electronic Materials Polyethylene Glycols - chemistry Retention time Scientific imaging Spectrometry, Fluorescence - methods Surgical implants |
title | In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20and%20in%20vitro%20tracking%20of%20erosion%20in%20biodegradable%20materials%20using%20non-invasive%20fluorescence%20imaging&rft.jtitle=Nature%20materials&rft.au=Artzi,%20Natalie&rft.date=2011-09-01&rft.volume=10&rft.issue=9&rft.spage=890&rft.epage=890&rft.pages=890-890&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3095&rft_dat=%3Cproquest_pubme%3E3088754651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439114086&rft_id=info:pmid/21857678&rfr_iscdi=true |