Automatic detection of blue-white veil and related structures in dermoscopy images

Abstract Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. One of the most important features for the diagnosis of melanoma in dermoscopy images is the blue-white...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 2008-12, Vol.32 (8), p.670-677
Hauptverfasser: Celebi, M. Emre, Iyatomi, Hitoshi, Stoecker, William V, Moss, Randy H, Rabinovitz, Harold S, Argenziano, Giuseppe, Soyer, H. Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 677
container_issue 8
container_start_page 670
container_title Computerized medical imaging and graphics
container_volume 32
creator Celebi, M. Emre
Iyatomi, Hitoshi
Stoecker, William V
Moss, Randy H
Rabinovitz, Harold S
Argenziano, Giuseppe
Soyer, H. Peter
description Abstract Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. One of the most important features for the diagnosis of melanoma in dermoscopy images is the blue-white veil (irregular, structureless areas of confluent blue pigmentation with an overlying white “ground-glass” film). In this article, we present a machine learning approach to the detection of blue-white veil and related structures in dermoscopy images. The method involves contextual pixel classification using a decision tree classifier. The percentage of blue-white areas detected in a lesion combined with a simple shape descriptor yielded a sensitivity of 69.35% and a specificity of 89.97% on a set of 545 dermoscopy images. The sensitivity rises to 78.20% for detection of blue veil in those cases where it is a primary feature for melanoma recognition.
doi_str_mv 10.1016/j.compmedimag.2008.08.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3160648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611108000815</els_id><sourcerecordid>69792514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-d141a30b1c2ef640a440da61a577ac7499663d935e05b366c8d899fd52162ed83</originalsourceid><addsrcrecordid>eNqNUsuK3DAQNCEhO9nkF4Jzyc2TbtuSpcvCMuSxsBDI4yw0UntXE9uaSPKE-fvIzJDd5BRo0EFV1UVXFcUbhDUC8ne7tfHjfiTrRn23rgHEehlonhQrFJ2soOvwabECIVnFEfGieBHjDgBq6PB5cYFCQCsZWxVfrufkR52cKS0lMsn5qfR9uR1mqn7du0TlgdxQ6smWgQadyJYxhdmkOVAs3ZRpYfTR-P2xXOxQfFk86_UQ6dX5vSy-f3j_bfOpuv388WZzfVsZxjBVFlvUDWzR1NTzFnTbgtUcNes6bbpWSs4bKxtGwLYN50ZYIWVvWY28Jiuay-LqpLuft_kWhqYU9KD2IdsIR-W1U3__TO5e3fmDapADbxeBt2eB4H_OFJMaXTQ0DHoiP0fFZSdrhm0GyhPQBB9joP7PEgS1JKJ26lEiaklELQNN5r5-7PKBeY4gAzYnAOVbHRwFFY2jyWStkPNQ1rv_WnP1j4oZ3OSMHn7QkeLOz2HKYShUsVagvi7VWJoBIrdCIGt-A5w6uZc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69792514</pqid></control><display><type>article</type><title>Automatic detection of blue-white veil and related structures in dermoscopy images</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Celebi, M. Emre ; Iyatomi, Hitoshi ; Stoecker, William V ; Moss, Randy H ; Rabinovitz, Harold S ; Argenziano, Giuseppe ; Soyer, H. Peter</creator><creatorcontrib>Celebi, M. Emre ; Iyatomi, Hitoshi ; Stoecker, William V ; Moss, Randy H ; Rabinovitz, Harold S ; Argenziano, Giuseppe ; Soyer, H. Peter</creatorcontrib><description>Abstract Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. One of the most important features for the diagnosis of melanoma in dermoscopy images is the blue-white veil (irregular, structureless areas of confluent blue pigmentation with an overlying white “ground-glass” film). In this article, we present a machine learning approach to the detection of blue-white veil and related structures in dermoscopy images. The method involves contextual pixel classification using a decision tree classifier. The percentage of blue-white areas detected in a lesion combined with a simple shape descriptor yielded a sensitivity of 69.35% and a specificity of 89.97% on a set of 545 dermoscopy images. The sensitivity rises to 78.20% for detection of blue veil in those cases where it is a primary feature for melanoma recognition.</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/j.compmedimag.2008.08.003</identifier><identifier>PMID: 18804955</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Blue-white veil ; Contextual pixel classification ; Decision tree classifier ; Decision Trees ; Dermatology - methods ; Dermoscopy ; Dermoscopy - methods ; Humans ; Image Interpretation, Computer-Assisted - methods ; Internal Medicine ; Melanoma ; Melanoma - diagnosis ; Melanoma - pathology ; Nevus, Blue - diagnosis ; Nevus, Blue - pathology ; Other ; Pattern Recognition, Automated - methods ; Sensitivity and Specificity ; Skin Neoplasms - diagnosis ; Skin Neoplasms - pathology ; Skin Pigmentation</subject><ispartof>Computerized medical imaging and graphics, 2008-12, Vol.32 (8), p.670-677</ispartof><rights>Elsevier Ltd</rights><rights>2008 Elsevier Ltd</rights><rights>2008 Elsevier Ltd. All rights reserved. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-d141a30b1c2ef640a440da61a577ac7499663d935e05b366c8d899fd52162ed83</citedby><cites>FETCH-LOGICAL-c551t-d141a30b1c2ef640a440da61a577ac7499663d935e05b366c8d899fd52162ed83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compmedimag.2008.08.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18804955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Celebi, M. Emre</creatorcontrib><creatorcontrib>Iyatomi, Hitoshi</creatorcontrib><creatorcontrib>Stoecker, William V</creatorcontrib><creatorcontrib>Moss, Randy H</creatorcontrib><creatorcontrib>Rabinovitz, Harold S</creatorcontrib><creatorcontrib>Argenziano, Giuseppe</creatorcontrib><creatorcontrib>Soyer, H. Peter</creatorcontrib><title>Automatic detection of blue-white veil and related structures in dermoscopy images</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>Abstract Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. One of the most important features for the diagnosis of melanoma in dermoscopy images is the blue-white veil (irregular, structureless areas of confluent blue pigmentation with an overlying white “ground-glass” film). In this article, we present a machine learning approach to the detection of blue-white veil and related structures in dermoscopy images. The method involves contextual pixel classification using a decision tree classifier. The percentage of blue-white areas detected in a lesion combined with a simple shape descriptor yielded a sensitivity of 69.35% and a specificity of 89.97% on a set of 545 dermoscopy images. The sensitivity rises to 78.20% for detection of blue veil in those cases where it is a primary feature for melanoma recognition.</description><subject>Artificial Intelligence</subject><subject>Blue-white veil</subject><subject>Contextual pixel classification</subject><subject>Decision tree classifier</subject><subject>Decision Trees</subject><subject>Dermatology - methods</subject><subject>Dermoscopy</subject><subject>Dermoscopy - methods</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Internal Medicine</subject><subject>Melanoma</subject><subject>Melanoma - diagnosis</subject><subject>Melanoma - pathology</subject><subject>Nevus, Blue - diagnosis</subject><subject>Nevus, Blue - pathology</subject><subject>Other</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Sensitivity and Specificity</subject><subject>Skin Neoplasms - diagnosis</subject><subject>Skin Neoplasms - pathology</subject><subject>Skin Pigmentation</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUsuK3DAQNCEhO9nkF4Jzyc2TbtuSpcvCMuSxsBDI4yw0UntXE9uaSPKE-fvIzJDd5BRo0EFV1UVXFcUbhDUC8ne7tfHjfiTrRn23rgHEehlonhQrFJ2soOvwabECIVnFEfGieBHjDgBq6PB5cYFCQCsZWxVfrufkR52cKS0lMsn5qfR9uR1mqn7du0TlgdxQ6smWgQadyJYxhdmkOVAs3ZRpYfTR-P2xXOxQfFk86_UQ6dX5vSy-f3j_bfOpuv388WZzfVsZxjBVFlvUDWzR1NTzFnTbgtUcNes6bbpWSs4bKxtGwLYN50ZYIWVvWY28Jiuay-LqpLuft_kWhqYU9KD2IdsIR-W1U3__TO5e3fmDapADbxeBt2eB4H_OFJMaXTQ0DHoiP0fFZSdrhm0GyhPQBB9joP7PEgS1JKJ26lEiaklELQNN5r5-7PKBeY4gAzYnAOVbHRwFFY2jyWStkPNQ1rv_WnP1j4oZ3OSMHn7QkeLOz2HKYShUsVagvi7VWJoBIrdCIGt-A5w6uZc</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Celebi, M. Emre</creator><creator>Iyatomi, Hitoshi</creator><creator>Stoecker, William V</creator><creator>Moss, Randy H</creator><creator>Rabinovitz, Harold S</creator><creator>Argenziano, Giuseppe</creator><creator>Soyer, H. Peter</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Automatic detection of blue-white veil and related structures in dermoscopy images</title><author>Celebi, M. Emre ; Iyatomi, Hitoshi ; Stoecker, William V ; Moss, Randy H ; Rabinovitz, Harold S ; Argenziano, Giuseppe ; Soyer, H. Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-d141a30b1c2ef640a440da61a577ac7499663d935e05b366c8d899fd52162ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial Intelligence</topic><topic>Blue-white veil</topic><topic>Contextual pixel classification</topic><topic>Decision tree classifier</topic><topic>Decision Trees</topic><topic>Dermatology - methods</topic><topic>Dermoscopy</topic><topic>Dermoscopy - methods</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Internal Medicine</topic><topic>Melanoma</topic><topic>Melanoma - diagnosis</topic><topic>Melanoma - pathology</topic><topic>Nevus, Blue - diagnosis</topic><topic>Nevus, Blue - pathology</topic><topic>Other</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Sensitivity and Specificity</topic><topic>Skin Neoplasms - diagnosis</topic><topic>Skin Neoplasms - pathology</topic><topic>Skin Pigmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celebi, M. Emre</creatorcontrib><creatorcontrib>Iyatomi, Hitoshi</creatorcontrib><creatorcontrib>Stoecker, William V</creatorcontrib><creatorcontrib>Moss, Randy H</creatorcontrib><creatorcontrib>Rabinovitz, Harold S</creatorcontrib><creatorcontrib>Argenziano, Giuseppe</creatorcontrib><creatorcontrib>Soyer, H. Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celebi, M. Emre</au><au>Iyatomi, Hitoshi</au><au>Stoecker, William V</au><au>Moss, Randy H</au><au>Rabinovitz, Harold S</au><au>Argenziano, Giuseppe</au><au>Soyer, H. Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic detection of blue-white veil and related structures in dermoscopy images</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>32</volume><issue>8</issue><spage>670</spage><epage>677</epage><pages>670-677</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>Abstract Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. One of the most important features for the diagnosis of melanoma in dermoscopy images is the blue-white veil (irregular, structureless areas of confluent blue pigmentation with an overlying white “ground-glass” film). In this article, we present a machine learning approach to the detection of blue-white veil and related structures in dermoscopy images. The method involves contextual pixel classification using a decision tree classifier. The percentage of blue-white areas detected in a lesion combined with a simple shape descriptor yielded a sensitivity of 69.35% and a specificity of 89.97% on a set of 545 dermoscopy images. The sensitivity rises to 78.20% for detection of blue veil in those cases where it is a primary feature for melanoma recognition.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>18804955</pmid><doi>10.1016/j.compmedimag.2008.08.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-6111
ispartof Computerized medical imaging and graphics, 2008-12, Vol.32 (8), p.670-677
issn 0895-6111
1879-0771
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3160648
source MEDLINE; Elsevier ScienceDirect Journals
subjects Artificial Intelligence
Blue-white veil
Contextual pixel classification
Decision tree classifier
Decision Trees
Dermatology - methods
Dermoscopy
Dermoscopy - methods
Humans
Image Interpretation, Computer-Assisted - methods
Internal Medicine
Melanoma
Melanoma - diagnosis
Melanoma - pathology
Nevus, Blue - diagnosis
Nevus, Blue - pathology
Other
Pattern Recognition, Automated - methods
Sensitivity and Specificity
Skin Neoplasms - diagnosis
Skin Neoplasms - pathology
Skin Pigmentation
title Automatic detection of blue-white veil and related structures in dermoscopy images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20detection%20of%20blue-white%20veil%20and%20related%20structures%20in%20dermoscopy%20images&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Celebi,%20M.%20Emre&rft.date=2008-12-01&rft.volume=32&rft.issue=8&rft.spage=670&rft.epage=677&rft.pages=670-677&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/j.compmedimag.2008.08.003&rft_dat=%3Cproquest_pubme%3E69792514%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69792514&rft_id=info:pmid/18804955&rft_els_id=S0895611108000815&rfr_iscdi=true