TAK1-TAB2 signaling contributes to bone destruction by breast carcinoma cells

Advanced-stage breast cancers frequently metastasize to the bones and cause bone destruction, but the underlying mechanism is not fully understood. This study presents evidence that TGF-β-activated protein kinase 1 (TAK1) signaling in tumor cells promotes bone destruction by metastatic breast carcin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer research 2011-08, Vol.9 (8), p.1042-1053
Hauptverfasser: Safina, Alfiya, Sotomayor, Paula, Limoge, Michelle, Morrison, Carl, Bakin, Andrei V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advanced-stage breast cancers frequently metastasize to the bones and cause bone destruction, but the underlying mechanism is not fully understood. This study presents evidence that TGF-β-activated protein kinase 1 (TAK1) signaling in tumor cells promotes bone destruction by metastatic breast carcinoma cells, controlling expression of prometastatic factors including matrix metalloproteinase (MMP) 9 and COX2. Suppression of TAK1 signaling by dominant-negative TAK1 (dn-TAK1) in breast carcinoma MDA-MB-231 cells impairs bone colonization by carcinoma cells and bone osteolysis in the intracardiac injection model. Mechanistic studies showed that inhibition of TAK1 by dn-TAK1 or siRNA blocked expression of factors implicated in bone metastasis, such as MMP-9, COX2/PTGS2, parathyroid hormone-related protein (PTHrP) and interleukin 8 (IL-8), but did not affect activation of p38MAPK by TGF-β. TAK1 signaling is mediated by TAK1-binding partners TAB1, TAB2, and TAB3. Carcinoma cells express elevated mRNA levels of TAB2 and TAB3, whereas the TAB1 expression is noticeably low. Accordingly, depletion of TAB2 by siRNA reduced expression of MMP-9 and COX2. Together, these studies show that the TAK1-TAB2-TAB3 signaling axis is critical for carcinoma-induced bone lesions, mediating expression of proinvasive and osteolytic factors. These findings identify the TAK1-TAB2 axis as a potential therapeutic target in bone metastasis.
ISSN:1541-7786
1557-3125
DOI:10.1158/1541-7786.mcr-10-0196