Promotion of -mediated carbon removal by nanostructured / interfaces in solid oxide fuel cells
The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide / nickel ( BaO / Ni ) interfaces for low-cos...
Gespeichert in:
Veröffentlicht in: | Nature communications 2011-06, Vol.2, p.357 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 357 |
container_title | Nature communications |
container_volume | 2 |
creator | Yang, Lei Choi, YongMan Qin, Wentao Chen, Haiyan Blinn, Kevin Liu, Mingfei Liu, Ping Bai, Jianming Tyson, Trevor A. Liu, Meilin |
description | The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured
barium oxide
/
nickel
(
BaO
/
Ni
) interfaces for low-cost SOFCs, demonstrating high power density and stability in
C3H8
,
CO
and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized
BaO
islands grow on the
Ni
surface, creating numerous nanostructured
BaO
/
Ni
interfaces that readily adsorb
water
and facilitate
water
-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from
H2O
on
BaO
reacts with C on
Ni
near the
BaO
/
Ni
interface to produce
CO
and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.
Anodes composed of nickel/yttria-stabilized zirconia in solid oxide fuel cells are known to suffer from coking, which reduces their performance. Here, Yang and colleagues report a new barium oxide/nickel anode, which efficiently oxidizes fuel with minimum carbon buildup. |
doi_str_mv | 10.1038/ncomms1359 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3157151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_3157151</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_31571513</originalsourceid><addsrcrecordid>eNqlTbFOxDAUi5AQd4Jb-IL3A-XympZeFxYEYmRgJkrTVwhK8k5JeuL-ngwszHixZVu2ELco71Cqwz5aDiGj6scLsW1lhw0OrdqIXc5fskKNeOi6K7Fp8X7sBtlvxftr4sDFcQReoAk0O1NoBmvSVL1EgU_Gw3SGaCLnklZb1lQLe3CxUFqMpVwlZPZuBv52M8GykgdL3ucbcbkYn2n3y9fi4fnp7fGlOa5T_bIUSzJeH5MLJp01G6f_JtF96g8-aYX9gD2qfw_8AL4aYhU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Promotion of -mediated carbon removal by nanostructured / interfaces in solid oxide fuel cells</title><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Lei ; Choi, YongMan ; Qin, Wentao ; Chen, Haiyan ; Blinn, Kevin ; Liu, Mingfei ; Liu, Ping ; Bai, Jianming ; Tyson, Trevor A. ; Liu, Meilin</creator><creatorcontrib>Yang, Lei ; Choi, YongMan ; Qin, Wentao ; Chen, Haiyan ; Blinn, Kevin ; Liu, Mingfei ; Liu, Ping ; Bai, Jianming ; Tyson, Trevor A. ; Liu, Meilin</creatorcontrib><description>The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured
barium oxide
/
nickel
(
BaO
/
Ni
) interfaces for low-cost SOFCs, demonstrating high power density and stability in
C3H8
,
CO
and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized
BaO
islands grow on the
Ni
surface, creating numerous nanostructured
BaO
/
Ni
interfaces that readily adsorb
water
and facilitate
water
-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from
H2O
on
BaO
reacts with C on
Ni
near the
BaO
/
Ni
interface to produce
CO
and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.
Anodes composed of nickel/yttria-stabilized zirconia in solid oxide fuel cells are known to suffer from coking, which reduces their performance. Here, Yang and colleagues report a new barium oxide/nickel anode, which efficiently oxidizes fuel with minimum carbon buildup.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms1359</identifier><identifier>PMID: 21694705</identifier><language>eng</language><publisher>Nature Publishing Group</publisher><ispartof>Nature communications, 2011-06, Vol.2, p.357</ispartof><rights>Copyright © 2011, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2011 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids></links><search><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Choi, YongMan</creatorcontrib><creatorcontrib>Qin, Wentao</creatorcontrib><creatorcontrib>Chen, Haiyan</creatorcontrib><creatorcontrib>Blinn, Kevin</creatorcontrib><creatorcontrib>Liu, Mingfei</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Bai, Jianming</creatorcontrib><creatorcontrib>Tyson, Trevor A.</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><title>Promotion of -mediated carbon removal by nanostructured / interfaces in solid oxide fuel cells</title><title>Nature communications</title><description>The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured
barium oxide
/
nickel
(
BaO
/
Ni
) interfaces for low-cost SOFCs, demonstrating high power density and stability in
C3H8
,
CO
and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized
BaO
islands grow on the
Ni
surface, creating numerous nanostructured
BaO
/
Ni
interfaces that readily adsorb
water
and facilitate
water
-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from
H2O
on
BaO
reacts with C on
Ni
near the
BaO
/
Ni
interface to produce
CO
and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.
Anodes composed of nickel/yttria-stabilized zirconia in solid oxide fuel cells are known to suffer from coking, which reduces their performance. Here, Yang and colleagues report a new barium oxide/nickel anode, which efficiently oxidizes fuel with minimum carbon buildup.</description><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqlTbFOxDAUi5AQd4Jb-IL3A-XympZeFxYEYmRgJkrTVwhK8k5JeuL-ngwszHixZVu2ELco71Cqwz5aDiGj6scLsW1lhw0OrdqIXc5fskKNeOi6K7Fp8X7sBtlvxftr4sDFcQReoAk0O1NoBmvSVL1EgU_Gw3SGaCLnklZb1lQLe3CxUFqMpVwlZPZuBv52M8GykgdL3ucbcbkYn2n3y9fi4fnp7fGlOa5T_bIUSzJeH5MLJp01G6f_JtF96g8-aYX9gD2qfw_8AL4aYhU</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Yang, Lei</creator><creator>Choi, YongMan</creator><creator>Qin, Wentao</creator><creator>Chen, Haiyan</creator><creator>Blinn, Kevin</creator><creator>Liu, Mingfei</creator><creator>Liu, Ping</creator><creator>Bai, Jianming</creator><creator>Tyson, Trevor A.</creator><creator>Liu, Meilin</creator><general>Nature Publishing Group</general><scope>5PM</scope></search><sort><creationdate>20110601</creationdate><title>Promotion of -mediated carbon removal by nanostructured / interfaces in solid oxide fuel cells</title><author>Yang, Lei ; Choi, YongMan ; Qin, Wentao ; Chen, Haiyan ; Blinn, Kevin ; Liu, Mingfei ; Liu, Ping ; Bai, Jianming ; Tyson, Trevor A. ; Liu, Meilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_31571513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Choi, YongMan</creatorcontrib><creatorcontrib>Qin, Wentao</creatorcontrib><creatorcontrib>Chen, Haiyan</creatorcontrib><creatorcontrib>Blinn, Kevin</creatorcontrib><creatorcontrib>Liu, Mingfei</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Bai, Jianming</creatorcontrib><creatorcontrib>Tyson, Trevor A.</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lei</au><au>Choi, YongMan</au><au>Qin, Wentao</au><au>Chen, Haiyan</au><au>Blinn, Kevin</au><au>Liu, Mingfei</au><au>Liu, Ping</au><au>Bai, Jianming</au><au>Tyson, Trevor A.</au><au>Liu, Meilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Promotion of -mediated carbon removal by nanostructured / interfaces in solid oxide fuel cells</atitle><jtitle>Nature communications</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>2</volume><spage>357</spage><pages>357-</pages><eissn>2041-1723</eissn><abstract>The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured
barium oxide
/
nickel
(
BaO
/
Ni
) interfaces for low-cost SOFCs, demonstrating high power density and stability in
C3H8
,
CO
and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized
BaO
islands grow on the
Ni
surface, creating numerous nanostructured
BaO
/
Ni
interfaces that readily adsorb
water
and facilitate
water
-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from
H2O
on
BaO
reacts with C on
Ni
near the
BaO
/
Ni
interface to produce
CO
and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.
Anodes composed of nickel/yttria-stabilized zirconia in solid oxide fuel cells are known to suffer from coking, which reduces their performance. Here, Yang and colleagues report a new barium oxide/nickel anode, which efficiently oxidizes fuel with minimum carbon buildup.</abstract><pub>Nature Publishing Group</pub><pmid>21694705</pmid><doi>10.1038/ncomms1359</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2041-1723 |
ispartof | Nature communications, 2011-06, Vol.2, p.357 |
issn | 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3157151 |
source | Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Promotion of -mediated carbon removal by nanostructured / interfaces in solid oxide fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promotion%20of%20-mediated%20carbon%20removal%20by%20nanostructured%20/%20interfaces%20in%20solid%20oxide%20fuel%20cells&rft.jtitle=Nature%20communications&rft.au=Yang,%20Lei&rft.date=2011-06-01&rft.volume=2&rft.spage=357&rft.pages=357-&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms1359&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_3157151%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21694705&rfr_iscdi=true |