The evolution of nervous system patterning: insights from sea urchin development

Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2011-09, Vol.138 (17), p.3613-3623
Hauptverfasser: Angerer, Lynne M, Yaguchi, Shunsuke, Angerer, Robert C, Burke, Robert D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3623
container_issue 17
container_start_page 3613
container_title Development (Cambridge)
container_volume 138
creator Angerer, Lynne M
Yaguchi, Shunsuke
Angerer, Robert C
Burke, Robert D
description Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.
doi_str_mv 10.1242/dev.058172
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3152920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>902360859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-a02917da672137dd3c07fae7104773e4e3a4f12011b32904ece56012437a30033</originalsourceid><addsrcrecordid>eNqFkUFLJDEQhYMoOrp72R8guQlCu1VJd6fjQVhE3QVBD3oOsbt6JtKdjEn3gP9-I-OKnvZUh3p89V49xn4gnKEoxc-ONmdQNajEDltgqVShUehdtgBdQYFa4wE7TOkZAGSt1D47ENiIBjQs2P3DijhtwjBPLngeeu4pbsKceHpNE418baeJond-ec6dT265mhLvYxh5Isvn2K6c59kBDWE9kp--sb3eDom-v88j9nh99XD5u7i9u_lz-eu2aEtVTYUFoVF1tlYCpeo62YLqLSmE7F9SSdKWPQpAfJJCQ0ktVTXkuFJZmXPII3ax5a7np5G6Np-OdjDr6EYbX02wznzdeLcyy7AxEiuhBWTAyTsghpeZ0mRGl1oaBusp5zcahKyhqfR_lU2THVU1vjFPt8o2hpQi9R9-EMxbVyZ_ymy7yuLjzwk-pP_KkX8BEgCP_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883005610</pqid></control><display><type>article</type><title>The evolution of nervous system patterning: insights from sea urchin development</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Angerer, Lynne M ; Yaguchi, Shunsuke ; Angerer, Robert C ; Burke, Robert D</creator><creatorcontrib>Angerer, Lynne M ; Yaguchi, Shunsuke ; Angerer, Robert C ; Burke, Robert D</creatorcontrib><description>Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.058172</identifier><identifier>PMID: 21828090</identifier><language>eng</language><publisher>England: Company of Biologists</publisher><subject>Animals ; Body Patterning - genetics ; Body Patterning - physiology ; Bone Morphogenetic Proteins - genetics ; Bone Morphogenetic Proteins - metabolism ; Echinoidea ; Marine ; Nervous System - metabolism ; Nodal Protein - genetics ; Nodal Protein - metabolism ; Reviews ; Sea Urchins - enzymology ; Sea Urchins - growth &amp; development ; Sea Urchins - metabolism ; Signal Transduction - genetics ; Signal Transduction - physiology ; Wnt Proteins - genetics ; Wnt Proteins - metabolism</subject><ispartof>Development (Cambridge), 2011-09, Vol.138 (17), p.3613-3623</ispartof><rights>2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-a02917da672137dd3c07fae7104773e4e3a4f12011b32904ece56012437a30033</citedby><cites>FETCH-LOGICAL-c475t-a02917da672137dd3c07fae7104773e4e3a4f12011b32904ece56012437a30033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3665,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21828090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Angerer, Lynne M</creatorcontrib><creatorcontrib>Yaguchi, Shunsuke</creatorcontrib><creatorcontrib>Angerer, Robert C</creatorcontrib><creatorcontrib>Burke, Robert D</creatorcontrib><title>The evolution of nervous system patterning: insights from sea urchin development</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.</description><subject>Animals</subject><subject>Body Patterning - genetics</subject><subject>Body Patterning - physiology</subject><subject>Bone Morphogenetic Proteins - genetics</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Echinoidea</subject><subject>Marine</subject><subject>Nervous System - metabolism</subject><subject>Nodal Protein - genetics</subject><subject>Nodal Protein - metabolism</subject><subject>Reviews</subject><subject>Sea Urchins - enzymology</subject><subject>Sea Urchins - growth &amp; development</subject><subject>Sea Urchins - metabolism</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Wnt Proteins - genetics</subject><subject>Wnt Proteins - metabolism</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFLJDEQhYMoOrp72R8guQlCu1VJd6fjQVhE3QVBD3oOsbt6JtKdjEn3gP9-I-OKnvZUh3p89V49xn4gnKEoxc-ONmdQNajEDltgqVShUehdtgBdQYFa4wE7TOkZAGSt1D47ENiIBjQs2P3DijhtwjBPLngeeu4pbsKceHpNE418baeJond-ec6dT265mhLvYxh5Isvn2K6c59kBDWE9kp--sb3eDom-v88j9nh99XD5u7i9u_lz-eu2aEtVTYUFoVF1tlYCpeo62YLqLSmE7F9SSdKWPQpAfJJCQ0ktVTXkuFJZmXPII3ax5a7np5G6Np-OdjDr6EYbX02wznzdeLcyy7AxEiuhBWTAyTsghpeZ0mRGl1oaBusp5zcahKyhqfR_lU2THVU1vjFPt8o2hpQi9R9-EMxbVyZ_ymy7yuLjzwk-pP_KkX8BEgCP_w</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Angerer, Lynne M</creator><creator>Yaguchi, Shunsuke</creator><creator>Angerer, Robert C</creator><creator>Burke, Robert D</creator><general>Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201109</creationdate><title>The evolution of nervous system patterning: insights from sea urchin development</title><author>Angerer, Lynne M ; Yaguchi, Shunsuke ; Angerer, Robert C ; Burke, Robert D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-a02917da672137dd3c07fae7104773e4e3a4f12011b32904ece56012437a30033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Body Patterning - genetics</topic><topic>Body Patterning - physiology</topic><topic>Bone Morphogenetic Proteins - genetics</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Echinoidea</topic><topic>Marine</topic><topic>Nervous System - metabolism</topic><topic>Nodal Protein - genetics</topic><topic>Nodal Protein - metabolism</topic><topic>Reviews</topic><topic>Sea Urchins - enzymology</topic><topic>Sea Urchins - growth &amp; development</topic><topic>Sea Urchins - metabolism</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Wnt Proteins - genetics</topic><topic>Wnt Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angerer, Lynne M</creatorcontrib><creatorcontrib>Yaguchi, Shunsuke</creatorcontrib><creatorcontrib>Angerer, Robert C</creatorcontrib><creatorcontrib>Burke, Robert D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angerer, Lynne M</au><au>Yaguchi, Shunsuke</au><au>Angerer, Robert C</au><au>Burke, Robert D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution of nervous system patterning: insights from sea urchin development</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2011-09</date><risdate>2011</risdate><volume>138</volume><issue>17</issue><spage>3613</spage><epage>3623</epage><pages>3613-3623</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.</abstract><cop>England</cop><pub>Company of Biologists</pub><pmid>21828090</pmid><doi>10.1242/dev.058172</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-1991
ispartof Development (Cambridge), 2011-09, Vol.138 (17), p.3613-3623
issn 0950-1991
1477-9129
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3152920
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Company of Biologists
subjects Animals
Body Patterning - genetics
Body Patterning - physiology
Bone Morphogenetic Proteins - genetics
Bone Morphogenetic Proteins - metabolism
Echinoidea
Marine
Nervous System - metabolism
Nodal Protein - genetics
Nodal Protein - metabolism
Reviews
Sea Urchins - enzymology
Sea Urchins - growth & development
Sea Urchins - metabolism
Signal Transduction - genetics
Signal Transduction - physiology
Wnt Proteins - genetics
Wnt Proteins - metabolism
title The evolution of nervous system patterning: insights from sea urchin development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20of%20nervous%20system%20patterning:%20insights%20from%20sea%20urchin%20development&rft.jtitle=Development%20(Cambridge)&rft.au=Angerer,%20Lynne%20M&rft.date=2011-09&rft.volume=138&rft.issue=17&rft.spage=3613&rft.epage=3623&rft.pages=3613-3623&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.058172&rft_dat=%3Cproquest_pubme%3E902360859%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883005610&rft_id=info:pmid/21828090&rfr_iscdi=true