Novel Acidic Sesquiterpenoids Constitute a Dominant Class of Pathogen-Induced Phytoalexins in Maize

Nonvolatile terpenoid phytoalexins occur throughout the plant kingdom, but until recently were not known constituents of chemical defense in maize (Zea mays). We describe a novel family of ubiquitous maize sesquiterpenoid phytoalexins, termed zealexins, which were discovered through characterization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2011-08, Vol.156 (4), p.2082-2097
Hauptverfasser: Huffaker, Alisa, Kaplan, Fatma, Vaughan, Martha M., Dafoe, Nicole J., Ni, Xinzhi, Rocca, James R., Alborn, Hans T., Teal, Peter E.A., Schmelz, Eric A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2097
container_issue 4
container_start_page 2082
container_title Plant physiology (Bethesda)
container_volume 156
creator Huffaker, Alisa
Kaplan, Fatma
Vaughan, Martha M.
Dafoe, Nicole J.
Ni, Xinzhi
Rocca, James R.
Alborn, Hans T.
Teal, Peter E.A.
Schmelz, Eric A.
description Nonvolatile terpenoid phytoalexins occur throughout the plant kingdom, but until recently were not known constituents of chemical defense in maize (Zea mays). We describe a novel family of ubiquitous maize sesquiterpenoid phytoalexins, termed zealexins, which were discovered through characterization of Fusarium graminearum-induced responses. Zealexins accumulate to levels greater than 800 µg g⁻¹ fresh weight in F. graminearum-infected tissue. Their production is also elicited by a wide variety of fungi, Ostrinia nubilalis herbivory, and the synergistic action of jasmonic acid and ethylene. Zealexins exhibit antifungal activity against numerous phytopathogenic fungi at physiologically relevant concentrations. Structural elucidation of four members of this complex family revealed that all are acidic sesquiterpenoids containing a hydrocarbon skeleton that resembles β-macrocarpene. Induced zealexin accumulation is preceded by increased expression of the genes encoding TERPENE SYNTHASE6 (TPS6) and TPS11, which catalyze β-macrocarpene production. Furthermore, zealexin accumulation displays direct positive relationships with the transcript levels of both genes. Microarray analysis of F. graminearum-infected tissue revealed that Tps6/Tps᧲1 were among the most highly up-regulated genes, as was An2, an enf-copalyl diphosphate synthase associated with production of kauralexins. Transcript profiling suggests that zealexins cooccur with a number of antimicrobial proteins, including chitinases and pathogenesis-related proteins. In addition to zealexins, kauralexins and the benzoxazinoid 2-hydroxy-4,7-dimethoxy-l, 4-benzoxazin-3-one-glucose (HDMBOA-glucose) were produced in fungal-infected tissue. HDMBOA-glucose accumulation occurred in both wild-type and benzoxazine-deficientl (bx1) mutant lines, indicating that Bx1 gene activity is not required for HDMBOA biosynthesis. Together these results indicate an important cooperative role of terpenoid phytoalexins in maize biochemical defense.
doi_str_mv 10.1104/pp.111.179457
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41435104</jstor_id><sourcerecordid>41435104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-bc6f59cef74fd7503955b3ba7c3978dd696fb0cafaacf4d0a52d3a9adfd10aa23</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS1ERZfCkSPIl4pTih3byfqCVC0UKhWoBJytiT-6rrJ2ajsV7V9fV7ss5fRGmp_ejN5D6A0lJ5QS_mGaqtIT2ksu-mdoQQVrm1bw5XO0IKTOZLmUh-hlzteEEMoof4EOW9pJwki7QPp7vLUjPtXeeI1_2nwz-2LTZEP0JuNVDLn4MheLAX-KGx8gFLwaIWccHb6Eso5XNjTnwczaGny5visRRvvHh4x9wN_A39tX6MDBmO3rnR6h32eff62-Nhc_vpyvTi8aLVhXmkF3TkhtXc-d6QVhUoiBDdBrJvulMZ3s3EA0OADtuCEgWsNAgnGGEoCWHaGPW99pHjbWaBtKglFNyW8g3akIXv2_CX6truKtqqFIyUg1eL8zSPFmtrmojc_ajiMEG-esJOlpV4PmlWy2pE4x52Td_gol6rEXNU1Vqdr2Uvl3T1_b03-LqMDxDoCsYXQJgvb5H8d57VR2lXu75a5ziWm_55QzUc-yB_yQosU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907167944</pqid></control><display><type>article</type><title>Novel Acidic Sesquiterpenoids Constitute a Dominant Class of Pathogen-Induced Phytoalexins in Maize</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Huffaker, Alisa ; Kaplan, Fatma ; Vaughan, Martha M. ; Dafoe, Nicole J. ; Ni, Xinzhi ; Rocca, James R. ; Alborn, Hans T. ; Teal, Peter E.A. ; Schmelz, Eric A.</creator><creatorcontrib>Huffaker, Alisa ; Kaplan, Fatma ; Vaughan, Martha M. ; Dafoe, Nicole J. ; Ni, Xinzhi ; Rocca, James R. ; Alborn, Hans T. ; Teal, Peter E.A. ; Schmelz, Eric A.</creatorcontrib><description>Nonvolatile terpenoid phytoalexins occur throughout the plant kingdom, but until recently were not known constituents of chemical defense in maize (Zea mays). We describe a novel family of ubiquitous maize sesquiterpenoid phytoalexins, termed zealexins, which were discovered through characterization of Fusarium graminearum-induced responses. Zealexins accumulate to levels greater than 800 µg g⁻¹ fresh weight in F. graminearum-infected tissue. Their production is also elicited by a wide variety of fungi, Ostrinia nubilalis herbivory, and the synergistic action of jasmonic acid and ethylene. Zealexins exhibit antifungal activity against numerous phytopathogenic fungi at physiologically relevant concentrations. Structural elucidation of four members of this complex family revealed that all are acidic sesquiterpenoids containing a hydrocarbon skeleton that resembles β-macrocarpene. Induced zealexin accumulation is preceded by increased expression of the genes encoding TERPENE SYNTHASE6 (TPS6) and TPS11, which catalyze β-macrocarpene production. Furthermore, zealexin accumulation displays direct positive relationships with the transcript levels of both genes. Microarray analysis of F. graminearum-infected tissue revealed that Tps6/Tps᧲1 were among the most highly up-regulated genes, as was An2, an enf-copalyl diphosphate synthase associated with production of kauralexins. Transcript profiling suggests that zealexins cooccur with a number of antimicrobial proteins, including chitinases and pathogenesis-related proteins. In addition to zealexins, kauralexins and the benzoxazinoid 2-hydroxy-4,7-dimethoxy-l, 4-benzoxazin-3-one-glucose (HDMBOA-glucose) were produced in fungal-infected tissue. HDMBOA-glucose accumulation occurred in both wild-type and benzoxazine-deficientl (bx1) mutant lines, indicating that Bx1 gene activity is not required for HDMBOA biosynthesis. Together these results indicate an important cooperative role of terpenoid phytoalexins in maize biochemical defense.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.179457</identifier><identifier>PMID: 21690302</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Acids - metabolism ; Animals ; Biological and medical sciences ; Corn ; Cyclopentanes - metabolism ; Esters ; Ethylenes - metabolism ; Feeding Behavior - drug effects ; Flood damage ; Fundamental and applied biological sciences. Psychology ; Fungal spores ; Fungi ; Fungi - drug effects ; Fungi - growth &amp; development ; Fungi - physiology ; Fusarium ; Gas Chromatography-Mass Spectrometry ; Gene Expression Regulation, Plant - drug effects ; Genes ; Genes, Plant - genetics ; Herbivores ; Inoculation ; Insecta - drug effects ; Ostrinia nubilalis ; Oxylipins - metabolism ; Phytoalexins ; Plant Diseases - microbiology ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; PLANTS INTERACTING WITH OTHER ORGANISMS ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Sesquiterpenes - chemistry ; Sesquiterpenes - metabolism ; Sesquiterpenes - pharmacology ; Terpenoids ; Up-Regulation - drug effects ; Up-Regulation - genetics ; Zea mays ; Zea mays - genetics ; Zea mays - immunology ; Zea mays - metabolism ; Zea mays - microbiology</subject><ispartof>Plant physiology (Bethesda), 2011-08, Vol.156 (4), p.2082-2097</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Society of Plant Biologists. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-bc6f59cef74fd7503955b3ba7c3978dd696fb0cafaacf4d0a52d3a9adfd10aa23</citedby><cites>FETCH-LOGICAL-c536t-bc6f59cef74fd7503955b3ba7c3978dd696fb0cafaacf4d0a52d3a9adfd10aa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41435104$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41435104$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24425496$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21690302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huffaker, Alisa</creatorcontrib><creatorcontrib>Kaplan, Fatma</creatorcontrib><creatorcontrib>Vaughan, Martha M.</creatorcontrib><creatorcontrib>Dafoe, Nicole J.</creatorcontrib><creatorcontrib>Ni, Xinzhi</creatorcontrib><creatorcontrib>Rocca, James R.</creatorcontrib><creatorcontrib>Alborn, Hans T.</creatorcontrib><creatorcontrib>Teal, Peter E.A.</creatorcontrib><creatorcontrib>Schmelz, Eric A.</creatorcontrib><title>Novel Acidic Sesquiterpenoids Constitute a Dominant Class of Pathogen-Induced Phytoalexins in Maize</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Nonvolatile terpenoid phytoalexins occur throughout the plant kingdom, but until recently were not known constituents of chemical defense in maize (Zea mays). We describe a novel family of ubiquitous maize sesquiterpenoid phytoalexins, termed zealexins, which were discovered through characterization of Fusarium graminearum-induced responses. Zealexins accumulate to levels greater than 800 µg g⁻¹ fresh weight in F. graminearum-infected tissue. Their production is also elicited by a wide variety of fungi, Ostrinia nubilalis herbivory, and the synergistic action of jasmonic acid and ethylene. Zealexins exhibit antifungal activity against numerous phytopathogenic fungi at physiologically relevant concentrations. Structural elucidation of four members of this complex family revealed that all are acidic sesquiterpenoids containing a hydrocarbon skeleton that resembles β-macrocarpene. Induced zealexin accumulation is preceded by increased expression of the genes encoding TERPENE SYNTHASE6 (TPS6) and TPS11, which catalyze β-macrocarpene production. Furthermore, zealexin accumulation displays direct positive relationships with the transcript levels of both genes. Microarray analysis of F. graminearum-infected tissue revealed that Tps6/Tps᧲1 were among the most highly up-regulated genes, as was An2, an enf-copalyl diphosphate synthase associated with production of kauralexins. Transcript profiling suggests that zealexins cooccur with a number of antimicrobial proteins, including chitinases and pathogenesis-related proteins. In addition to zealexins, kauralexins and the benzoxazinoid 2-hydroxy-4,7-dimethoxy-l, 4-benzoxazin-3-one-glucose (HDMBOA-glucose) were produced in fungal-infected tissue. HDMBOA-glucose accumulation occurred in both wild-type and benzoxazine-deficientl (bx1) mutant lines, indicating that Bx1 gene activity is not required for HDMBOA biosynthesis. Together these results indicate an important cooperative role of terpenoid phytoalexins in maize biochemical defense.</description><subject>Acids - metabolism</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Corn</subject><subject>Cyclopentanes - metabolism</subject><subject>Esters</subject><subject>Ethylenes - metabolism</subject><subject>Feeding Behavior - drug effects</subject><subject>Flood damage</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal spores</subject><subject>Fungi</subject><subject>Fungi - drug effects</subject><subject>Fungi - growth &amp; development</subject><subject>Fungi - physiology</subject><subject>Fusarium</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Herbivores</subject><subject>Inoculation</subject><subject>Insecta - drug effects</subject><subject>Ostrinia nubilalis</subject><subject>Oxylipins - metabolism</subject><subject>Phytoalexins</subject><subject>Plant Diseases - microbiology</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>PLANTS INTERACTING WITH OTHER ORGANISMS</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Sesquiterpenes - chemistry</subject><subject>Sesquiterpenes - metabolism</subject><subject>Sesquiterpenes - pharmacology</subject><subject>Terpenoids</subject><subject>Up-Regulation - drug effects</subject><subject>Up-Regulation - genetics</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><subject>Zea mays - immunology</subject><subject>Zea mays - metabolism</subject><subject>Zea mays - microbiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS1ERZfCkSPIl4pTih3byfqCVC0UKhWoBJytiT-6rrJ2ajsV7V9fV7ss5fRGmp_ejN5D6A0lJ5QS_mGaqtIT2ksu-mdoQQVrm1bw5XO0IKTOZLmUh-hlzteEEMoof4EOW9pJwki7QPp7vLUjPtXeeI1_2nwz-2LTZEP0JuNVDLn4MheLAX-KGx8gFLwaIWccHb6Eso5XNjTnwczaGny5visRRvvHh4x9wN_A39tX6MDBmO3rnR6h32eff62-Nhc_vpyvTi8aLVhXmkF3TkhtXc-d6QVhUoiBDdBrJvulMZ3s3EA0OADtuCEgWsNAgnGGEoCWHaGPW99pHjbWaBtKglFNyW8g3akIXv2_CX6truKtqqFIyUg1eL8zSPFmtrmojc_ajiMEG-esJOlpV4PmlWy2pE4x52Td_gol6rEXNU1Vqdr2Uvl3T1_b03-LqMDxDoCsYXQJgvb5H8d57VR2lXu75a5ziWm_55QzUc-yB_yQosU</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Huffaker, Alisa</creator><creator>Kaplan, Fatma</creator><creator>Vaughan, Martha M.</creator><creator>Dafoe, Nicole J.</creator><creator>Ni, Xinzhi</creator><creator>Rocca, James R.</creator><creator>Alborn, Hans T.</creator><creator>Teal, Peter E.A.</creator><creator>Schmelz, Eric A.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>20110801</creationdate><title>Novel Acidic Sesquiterpenoids Constitute a Dominant Class of Pathogen-Induced Phytoalexins in Maize</title><author>Huffaker, Alisa ; Kaplan, Fatma ; Vaughan, Martha M. ; Dafoe, Nicole J. ; Ni, Xinzhi ; Rocca, James R. ; Alborn, Hans T. ; Teal, Peter E.A. ; Schmelz, Eric A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-bc6f59cef74fd7503955b3ba7c3978dd696fb0cafaacf4d0a52d3a9adfd10aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acids - metabolism</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Corn</topic><topic>Cyclopentanes - metabolism</topic><topic>Esters</topic><topic>Ethylenes - metabolism</topic><topic>Feeding Behavior - drug effects</topic><topic>Flood damage</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal spores</topic><topic>Fungi</topic><topic>Fungi - drug effects</topic><topic>Fungi - growth &amp; development</topic><topic>Fungi - physiology</topic><topic>Fusarium</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Herbivores</topic><topic>Inoculation</topic><topic>Insecta - drug effects</topic><topic>Ostrinia nubilalis</topic><topic>Oxylipins - metabolism</topic><topic>Phytoalexins</topic><topic>Plant Diseases - microbiology</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>PLANTS INTERACTING WITH OTHER ORGANISMS</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Sesquiterpenes - chemistry</topic><topic>Sesquiterpenes - metabolism</topic><topic>Sesquiterpenes - pharmacology</topic><topic>Terpenoids</topic><topic>Up-Regulation - drug effects</topic><topic>Up-Regulation - genetics</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><topic>Zea mays - immunology</topic><topic>Zea mays - metabolism</topic><topic>Zea mays - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huffaker, Alisa</creatorcontrib><creatorcontrib>Kaplan, Fatma</creatorcontrib><creatorcontrib>Vaughan, Martha M.</creatorcontrib><creatorcontrib>Dafoe, Nicole J.</creatorcontrib><creatorcontrib>Ni, Xinzhi</creatorcontrib><creatorcontrib>Rocca, James R.</creatorcontrib><creatorcontrib>Alborn, Hans T.</creatorcontrib><creatorcontrib>Teal, Peter E.A.</creatorcontrib><creatorcontrib>Schmelz, Eric A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huffaker, Alisa</au><au>Kaplan, Fatma</au><au>Vaughan, Martha M.</au><au>Dafoe, Nicole J.</au><au>Ni, Xinzhi</au><au>Rocca, James R.</au><au>Alborn, Hans T.</au><au>Teal, Peter E.A.</au><au>Schmelz, Eric A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Acidic Sesquiterpenoids Constitute a Dominant Class of Pathogen-Induced Phytoalexins in Maize</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>156</volume><issue>4</issue><spage>2082</spage><epage>2097</epage><pages>2082-2097</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Nonvolatile terpenoid phytoalexins occur throughout the plant kingdom, but until recently were not known constituents of chemical defense in maize (Zea mays). We describe a novel family of ubiquitous maize sesquiterpenoid phytoalexins, termed zealexins, which were discovered through characterization of Fusarium graminearum-induced responses. Zealexins accumulate to levels greater than 800 µg g⁻¹ fresh weight in F. graminearum-infected tissue. Their production is also elicited by a wide variety of fungi, Ostrinia nubilalis herbivory, and the synergistic action of jasmonic acid and ethylene. Zealexins exhibit antifungal activity against numerous phytopathogenic fungi at physiologically relevant concentrations. Structural elucidation of four members of this complex family revealed that all are acidic sesquiterpenoids containing a hydrocarbon skeleton that resembles β-macrocarpene. Induced zealexin accumulation is preceded by increased expression of the genes encoding TERPENE SYNTHASE6 (TPS6) and TPS11, which catalyze β-macrocarpene production. Furthermore, zealexin accumulation displays direct positive relationships with the transcript levels of both genes. Microarray analysis of F. graminearum-infected tissue revealed that Tps6/Tps᧲1 were among the most highly up-regulated genes, as was An2, an enf-copalyl diphosphate synthase associated with production of kauralexins. Transcript profiling suggests that zealexins cooccur with a number of antimicrobial proteins, including chitinases and pathogenesis-related proteins. In addition to zealexins, kauralexins and the benzoxazinoid 2-hydroxy-4,7-dimethoxy-l, 4-benzoxazin-3-one-glucose (HDMBOA-glucose) were produced in fungal-infected tissue. HDMBOA-glucose accumulation occurred in both wild-type and benzoxazine-deficientl (bx1) mutant lines, indicating that Bx1 gene activity is not required for HDMBOA biosynthesis. Together these results indicate an important cooperative role of terpenoid phytoalexins in maize biochemical defense.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21690302</pmid><doi>10.1104/pp.111.179457</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2011-08, Vol.156 (4), p.2082-2097
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149930
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acids - metabolism
Animals
Biological and medical sciences
Corn
Cyclopentanes - metabolism
Esters
Ethylenes - metabolism
Feeding Behavior - drug effects
Flood damage
Fundamental and applied biological sciences. Psychology
Fungal spores
Fungi
Fungi - drug effects
Fungi - growth & development
Fungi - physiology
Fusarium
Gas Chromatography-Mass Spectrometry
Gene Expression Regulation, Plant - drug effects
Genes
Genes, Plant - genetics
Herbivores
Inoculation
Insecta - drug effects
Ostrinia nubilalis
Oxylipins - metabolism
Phytoalexins
Plant Diseases - microbiology
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
PLANTS INTERACTING WITH OTHER ORGANISMS
RNA, Messenger - genetics
RNA, Messenger - metabolism
Sesquiterpenes - chemistry
Sesquiterpenes - metabolism
Sesquiterpenes - pharmacology
Terpenoids
Up-Regulation - drug effects
Up-Regulation - genetics
Zea mays
Zea mays - genetics
Zea mays - immunology
Zea mays - metabolism
Zea mays - microbiology
title Novel Acidic Sesquiterpenoids Constitute a Dominant Class of Pathogen-Induced Phytoalexins in Maize
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Acidic%20Sesquiterpenoids%20Constitute%20a%20Dominant%20Class%20of%20Pathogen-Induced%20Phytoalexins%20in%20Maize&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Huffaker,%20Alisa&rft.date=2011-08-01&rft.volume=156&rft.issue=4&rft.spage=2082&rft.epage=2097&rft.pages=2082-2097&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.179457&rft_dat=%3Cjstor_pubme%3E41435104%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907167944&rft_id=info:pmid/21690302&rft_jstor_id=41435104&rfr_iscdi=true