Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons
During brain development, pyramidal neurons migrate from the ventricular zone to reach their final destination in the cortex. In vivo depletion experiments shows that lamellipodin, through an effect on serum response factor, determines the neuronal migration mode in the developing cortex. During cor...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2011-08, Vol.13 (8), p.989-995 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 995 |
---|---|
container_issue | 8 |
container_start_page | 989 |
container_title | Nature cell biology |
container_volume | 13 |
creator | Pinheiro, Elaine M. Xie, Zhigang Norovich, Amy L. Vidaki, Marina Tsai, Li-Huei Gertler, Frank B. |
description | During brain development, pyramidal neurons migrate from the ventricular zone to reach their final destination in the cortex.
In vivo
depletion experiments shows that lamellipodin, through an effect on serum response factor, determines the neuronal migration mode in the developing cortex.
During corticogenesis, pyramidal neurons (∼80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia
1
,
2
, and then migrate to their proper position within the cortex
1
,
3
. As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in
Caenorhabditis elegans
, in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode. |
doi_str_mv | 10.1038/ncb2292 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A264365522</galeid><sourcerecordid>A264365522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-c6691a1fc9233d1f0ba93e3263a521dc172312df4233e4cb52a68b830c6e87463</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEohcQb4AiWFAWaX2LHW-QqoqWSkdCasvaOM4kdZXYqZ0c0bevQw8tp0LIC1sz3_yaGf9Z9g6jQ4xodeRMTYgkL7JdzAQvGBfy5fLmZSGoJDvZXow3CGHGkHid7RAsqpIRvJv9XI1N3sDYw2S9ywOsQfcxn671lF9enOZxBGNbCzEPurG6z9cQ4pwA7Tpw0xIZbBf072rf5uNd0INtUtjBHLyLb7JXbVKEt5t7P_tx-vXq5Fux-n52fnK8KkzJyVQYziXWuDWSUNrgFtVaUqCEU10S3BgsCMWkaVlKAzN1STSv6ooiw6ESjNP97MuD7jjXAzQmNRd0r8ZgBx3ulNdWbWecvVadXyuKmRSYJYFPG4Hgb2eIkxpsNND32oGfo6oqJKXgFUrkwX9JjCRlpWBo6erDM_TGz8GlRSiZvmORqxL08QHqdA_KutanBs2iqY4JZ5SXJSGJOvwHlU4DgzXeQWtTfKvg81ZBYib4NXV6jlGdX15ss5vhTfAxBmgfF4eRWhymNg5L5Pu_9_zI_bHU03ZiSiWThKeRn2vdA8mK1v0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900176808</pqid></control><display><type>article</type><title>Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Pinheiro, Elaine M. ; Xie, Zhigang ; Norovich, Amy L. ; Vidaki, Marina ; Tsai, Li-Huei ; Gertler, Frank B.</creator><creatorcontrib>Pinheiro, Elaine M. ; Xie, Zhigang ; Norovich, Amy L. ; Vidaki, Marina ; Tsai, Li-Huei ; Gertler, Frank B.</creatorcontrib><description>During brain development, pyramidal neurons migrate from the ventricular zone to reach their final destination in the cortex.
In vivo
depletion experiments shows that lamellipodin, through an effect on serum response factor, determines the neuronal migration mode in the developing cortex.
During corticogenesis, pyramidal neurons (∼80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia
1
,
2
, and then migrate to their proper position within the cortex
1
,
3
. As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in
Caenorhabditis elegans
, in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb2292</identifier><identifier>PMID: 21785421</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2571 ; 631/80/128/1276 ; 631/80/84 ; Animals ; Base Sequence ; Biomedical and Life Sciences ; Caenorhabditis elegans ; Cancer ; Cancer Research ; Cell Biology ; Cell migration ; Cell Movement - physiology ; Depletion ; Developmental Biology ; Embryos ; Female ; Gene Knockdown Techniques ; Genotype & phenotype ; letter ; Life Sciences ; Mice ; Models, Neurological ; Nerve Tissue Proteins - antagonists & inhibitors ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - physiology ; Neurogenesis - physiology ; Neurons ; Physiological aspects ; Pregnancy ; Pyramidal Cells - physiology ; RNA, Small Interfering - genetics ; Serum Response Factor - physiology ; Stem Cells</subject><ispartof>Nature cell biology, 2011-08, Vol.13 (8), p.989-995</ispartof><rights>Springer Nature Limited 2011</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-c6691a1fc9233d1f0ba93e3263a521dc172312df4233e4cb52a68b830c6e87463</citedby><cites>FETCH-LOGICAL-c562t-c6691a1fc9233d1f0ba93e3263a521dc172312df4233e4cb52a68b830c6e87463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb2292$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb2292$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21785421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinheiro, Elaine M.</creatorcontrib><creatorcontrib>Xie, Zhigang</creatorcontrib><creatorcontrib>Norovich, Amy L.</creatorcontrib><creatorcontrib>Vidaki, Marina</creatorcontrib><creatorcontrib>Tsai, Li-Huei</creatorcontrib><creatorcontrib>Gertler, Frank B.</creatorcontrib><title>Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>During brain development, pyramidal neurons migrate from the ventricular zone to reach their final destination in the cortex.
In vivo
depletion experiments shows that lamellipodin, through an effect on serum response factor, determines the neuronal migration mode in the developing cortex.
During corticogenesis, pyramidal neurons (∼80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia
1
,
2
, and then migrate to their proper position within the cortex
1
,
3
. As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in
Caenorhabditis elegans
, in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.</description><subject>631/378/2571</subject><subject>631/80/128/1276</subject><subject>631/80/84</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biomedical and Life Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell migration</subject><subject>Cell Movement - physiology</subject><subject>Depletion</subject><subject>Developmental Biology</subject><subject>Embryos</subject><subject>Female</subject><subject>Gene Knockdown Techniques</subject><subject>Genotype & phenotype</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>Nerve Tissue Proteins - antagonists & inhibitors</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Neurogenesis - physiology</subject><subject>Neurons</subject><subject>Physiological aspects</subject><subject>Pregnancy</subject><subject>Pyramidal Cells - physiology</subject><subject>RNA, Small Interfering - genetics</subject><subject>Serum Response Factor - physiology</subject><subject>Stem Cells</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kstu1TAQhiMEohcQb4AiWFAWaX2LHW-QqoqWSkdCasvaOM4kdZXYqZ0c0bevQw8tp0LIC1sz3_yaGf9Z9g6jQ4xodeRMTYgkL7JdzAQvGBfy5fLmZSGoJDvZXow3CGHGkHid7RAsqpIRvJv9XI1N3sDYw2S9ywOsQfcxn671lF9enOZxBGNbCzEPurG6z9cQ4pwA7Tpw0xIZbBf072rf5uNd0INtUtjBHLyLb7JXbVKEt5t7P_tx-vXq5Fux-n52fnK8KkzJyVQYziXWuDWSUNrgFtVaUqCEU10S3BgsCMWkaVlKAzN1STSv6ooiw6ESjNP97MuD7jjXAzQmNRd0r8ZgBx3ulNdWbWecvVadXyuKmRSYJYFPG4Hgb2eIkxpsNND32oGfo6oqJKXgFUrkwX9JjCRlpWBo6erDM_TGz8GlRSiZvmORqxL08QHqdA_KutanBs2iqY4JZ5SXJSGJOvwHlU4DgzXeQWtTfKvg81ZBYib4NXV6jlGdX15ss5vhTfAxBmgfF4eRWhymNg5L5Pu_9_zI_bHU03ZiSiWThKeRn2vdA8mK1v0</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Pinheiro, Elaine M.</creator><creator>Xie, Zhigang</creator><creator>Norovich, Amy L.</creator><creator>Vidaki, Marina</creator><creator>Tsai, Li-Huei</creator><creator>Gertler, Frank B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110801</creationdate><title>Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons</title><author>Pinheiro, Elaine M. ; Xie, Zhigang ; Norovich, Amy L. ; Vidaki, Marina ; Tsai, Li-Huei ; Gertler, Frank B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-c6691a1fc9233d1f0ba93e3263a521dc172312df4233e4cb52a68b830c6e87463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/378/2571</topic><topic>631/80/128/1276</topic><topic>631/80/84</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biomedical and Life Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell migration</topic><topic>Cell Movement - physiology</topic><topic>Depletion</topic><topic>Developmental Biology</topic><topic>Embryos</topic><topic>Female</topic><topic>Gene Knockdown Techniques</topic><topic>Genotype & phenotype</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>Nerve Tissue Proteins - antagonists & inhibitors</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Neurogenesis - physiology</topic><topic>Neurons</topic><topic>Physiological aspects</topic><topic>Pregnancy</topic><topic>Pyramidal Cells - physiology</topic><topic>RNA, Small Interfering - genetics</topic><topic>Serum Response Factor - physiology</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinheiro, Elaine M.</creatorcontrib><creatorcontrib>Xie, Zhigang</creatorcontrib><creatorcontrib>Norovich, Amy L.</creatorcontrib><creatorcontrib>Vidaki, Marina</creatorcontrib><creatorcontrib>Tsai, Li-Huei</creatorcontrib><creatorcontrib>Gertler, Frank B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinheiro, Elaine M.</au><au>Xie, Zhigang</au><au>Norovich, Amy L.</au><au>Vidaki, Marina</au><au>Tsai, Li-Huei</au><au>Gertler, Frank B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>13</volume><issue>8</issue><spage>989</spage><epage>995</epage><pages>989-995</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>During brain development, pyramidal neurons migrate from the ventricular zone to reach their final destination in the cortex.
In vivo
depletion experiments shows that lamellipodin, through an effect on serum response factor, determines the neuronal migration mode in the developing cortex.
During corticogenesis, pyramidal neurons (∼80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia
1
,
2
, and then migrate to their proper position within the cortex
1
,
3
. As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in
Caenorhabditis elegans
, in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21785421</pmid><doi>10.1038/ncb2292</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2011-08, Vol.13 (8), p.989-995 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149714 |
source | MEDLINE; Nature; Springer Nature - Complete Springer Journals |
subjects | 631/378/2571 631/80/128/1276 631/80/84 Animals Base Sequence Biomedical and Life Sciences Caenorhabditis elegans Cancer Cancer Research Cell Biology Cell migration Cell Movement - physiology Depletion Developmental Biology Embryos Female Gene Knockdown Techniques Genotype & phenotype letter Life Sciences Mice Models, Neurological Nerve Tissue Proteins - antagonists & inhibitors Nerve Tissue Proteins - genetics Nerve Tissue Proteins - physiology Neurogenesis - physiology Neurons Physiological aspects Pregnancy Pyramidal Cells - physiology RNA, Small Interfering - genetics Serum Response Factor - physiology Stem Cells |
title | Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lpd%20depletion%20reveals%20that%20SRF%20specifies%20radial%20versus%20tangential%20migration%20of%20pyramidal%20neurons&rft.jtitle=Nature%20cell%20biology&rft.au=Pinheiro,%20Elaine%20M.&rft.date=2011-08-01&rft.volume=13&rft.issue=8&rft.spage=989&rft.epage=995&rft.pages=989-995&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb2292&rft_dat=%3Cgale_pubme%3EA264365522%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900176808&rft_id=info:pmid/21785421&rft_galeid=A264365522&rfr_iscdi=true |