Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons

During brain development, pyramidal neurons migrate from the ventricular zone to reach their final destination in the cortex. In vivo depletion experiments shows that lamellipodin, through an effect on serum response factor, determines the neuronal migration mode in the developing cortex. During cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2011-08, Vol.13 (8), p.989-995
Hauptverfasser: Pinheiro, Elaine M., Xie, Zhigang, Norovich, Amy L., Vidaki, Marina, Tsai, Li-Huei, Gertler, Frank B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 995
container_issue 8
container_start_page 989
container_title Nature cell biology
container_volume 13
creator Pinheiro, Elaine M.
Xie, Zhigang
Norovich, Amy L.
Vidaki, Marina
Tsai, Li-Huei
Gertler, Frank B.
description During brain development, pyramidal neurons migrate from the ventricular zone to reach their final destination in the cortex. In vivo depletion experiments shows that lamellipodin, through an effect on serum response factor, determines the neuronal migration mode in the developing cortex. During corticogenesis, pyramidal neurons (∼80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia 1 , 2 , and then migrate to their proper position within the cortex 1 , 3 . As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in Caenorhabditis elegans , in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.
doi_str_mv 10.1038/ncb2292
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A264365522</galeid><sourcerecordid>A264365522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-c6691a1fc9233d1f0ba93e3263a521dc172312df4233e4cb52a68b830c6e87463</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEohcQb4AiWFAWaX2LHW-QqoqWSkdCasvaOM4kdZXYqZ0c0bevQw8tp0LIC1sz3_yaGf9Z9g6jQ4xodeRMTYgkL7JdzAQvGBfy5fLmZSGoJDvZXow3CGHGkHid7RAsqpIRvJv9XI1N3sDYw2S9ywOsQfcxn671lF9enOZxBGNbCzEPurG6z9cQ4pwA7Tpw0xIZbBf072rf5uNd0INtUtjBHLyLb7JXbVKEt5t7P_tx-vXq5Fux-n52fnK8KkzJyVQYziXWuDWSUNrgFtVaUqCEU10S3BgsCMWkaVlKAzN1STSv6ooiw6ESjNP97MuD7jjXAzQmNRd0r8ZgBx3ulNdWbWecvVadXyuKmRSYJYFPG4Hgb2eIkxpsNND32oGfo6oqJKXgFUrkwX9JjCRlpWBo6erDM_TGz8GlRSiZvmORqxL08QHqdA_KutanBs2iqY4JZ5SXJSGJOvwHlU4DgzXeQWtTfKvg81ZBYib4NXV6jlGdX15ss5vhTfAxBmgfF4eRWhymNg5L5Pu_9_zI_bHU03ZiSiWThKeRn2vdA8mK1v0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900176808</pqid></control><display><type>article</type><title>Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Pinheiro, Elaine M. ; Xie, Zhigang ; Norovich, Amy L. ; Vidaki, Marina ; Tsai, Li-Huei ; Gertler, Frank B.</creator><creatorcontrib>Pinheiro, Elaine M. ; Xie, Zhigang ; Norovich, Amy L. ; Vidaki, Marina ; Tsai, Li-Huei ; Gertler, Frank B.</creatorcontrib><description>During brain development, pyramidal neurons migrate from the ventricular zone to reach their final destination in the cortex. In vivo depletion experiments shows that lamellipodin, through an effect on serum response factor, determines the neuronal migration mode in the developing cortex. During corticogenesis, pyramidal neurons (∼80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia 1 , 2 , and then migrate to their proper position within the cortex 1 , 3 . As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in Caenorhabditis elegans , in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb2292</identifier><identifier>PMID: 21785421</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2571 ; 631/80/128/1276 ; 631/80/84 ; Animals ; Base Sequence ; Biomedical and Life Sciences ; Caenorhabditis elegans ; Cancer ; Cancer Research ; Cell Biology ; Cell migration ; Cell Movement - physiology ; Depletion ; Developmental Biology ; Embryos ; Female ; Gene Knockdown Techniques ; Genotype &amp; phenotype ; letter ; Life Sciences ; Mice ; Models, Neurological ; Nerve Tissue Proteins - antagonists &amp; inhibitors ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - physiology ; Neurogenesis - physiology ; Neurons ; Physiological aspects ; Pregnancy ; Pyramidal Cells - physiology ; RNA, Small Interfering - genetics ; Serum Response Factor - physiology ; Stem Cells</subject><ispartof>Nature cell biology, 2011-08, Vol.13 (8), p.989-995</ispartof><rights>Springer Nature Limited 2011</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-c6691a1fc9233d1f0ba93e3263a521dc172312df4233e4cb52a68b830c6e87463</citedby><cites>FETCH-LOGICAL-c562t-c6691a1fc9233d1f0ba93e3263a521dc172312df4233e4cb52a68b830c6e87463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb2292$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb2292$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21785421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinheiro, Elaine M.</creatorcontrib><creatorcontrib>Xie, Zhigang</creatorcontrib><creatorcontrib>Norovich, Amy L.</creatorcontrib><creatorcontrib>Vidaki, Marina</creatorcontrib><creatorcontrib>Tsai, Li-Huei</creatorcontrib><creatorcontrib>Gertler, Frank B.</creatorcontrib><title>Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>During brain development, pyramidal neurons migrate from the ventricular zone to reach their final destination in the cortex. In vivo depletion experiments shows that lamellipodin, through an effect on serum response factor, determines the neuronal migration mode in the developing cortex. During corticogenesis, pyramidal neurons (∼80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia 1 , 2 , and then migrate to their proper position within the cortex 1 , 3 . As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in Caenorhabditis elegans , in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.</description><subject>631/378/2571</subject><subject>631/80/128/1276</subject><subject>631/80/84</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biomedical and Life Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell migration</subject><subject>Cell Movement - physiology</subject><subject>Depletion</subject><subject>Developmental Biology</subject><subject>Embryos</subject><subject>Female</subject><subject>Gene Knockdown Techniques</subject><subject>Genotype &amp; phenotype</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>Nerve Tissue Proteins - antagonists &amp; inhibitors</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Neurogenesis - physiology</subject><subject>Neurons</subject><subject>Physiological aspects</subject><subject>Pregnancy</subject><subject>Pyramidal Cells - physiology</subject><subject>RNA, Small Interfering - genetics</subject><subject>Serum Response Factor - physiology</subject><subject>Stem Cells</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kstu1TAQhiMEohcQb4AiWFAWaX2LHW-QqoqWSkdCasvaOM4kdZXYqZ0c0bevQw8tp0LIC1sz3_yaGf9Z9g6jQ4xodeRMTYgkL7JdzAQvGBfy5fLmZSGoJDvZXow3CGHGkHid7RAsqpIRvJv9XI1N3sDYw2S9ywOsQfcxn671lF9enOZxBGNbCzEPurG6z9cQ4pwA7Tpw0xIZbBf072rf5uNd0INtUtjBHLyLb7JXbVKEt5t7P_tx-vXq5Fux-n52fnK8KkzJyVQYziXWuDWSUNrgFtVaUqCEU10S3BgsCMWkaVlKAzN1STSv6ooiw6ESjNP97MuD7jjXAzQmNRd0r8ZgBx3ulNdWbWecvVadXyuKmRSYJYFPG4Hgb2eIkxpsNND32oGfo6oqJKXgFUrkwX9JjCRlpWBo6erDM_TGz8GlRSiZvmORqxL08QHqdA_KutanBs2iqY4JZ5SXJSGJOvwHlU4DgzXeQWtTfKvg81ZBYib4NXV6jlGdX15ss5vhTfAxBmgfF4eRWhymNg5L5Pu_9_zI_bHU03ZiSiWThKeRn2vdA8mK1v0</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Pinheiro, Elaine M.</creator><creator>Xie, Zhigang</creator><creator>Norovich, Amy L.</creator><creator>Vidaki, Marina</creator><creator>Tsai, Li-Huei</creator><creator>Gertler, Frank B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110801</creationdate><title>Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons</title><author>Pinheiro, Elaine M. ; Xie, Zhigang ; Norovich, Amy L. ; Vidaki, Marina ; Tsai, Li-Huei ; Gertler, Frank B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-c6691a1fc9233d1f0ba93e3263a521dc172312df4233e4cb52a68b830c6e87463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/378/2571</topic><topic>631/80/128/1276</topic><topic>631/80/84</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biomedical and Life Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell migration</topic><topic>Cell Movement - physiology</topic><topic>Depletion</topic><topic>Developmental Biology</topic><topic>Embryos</topic><topic>Female</topic><topic>Gene Knockdown Techniques</topic><topic>Genotype &amp; phenotype</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>Nerve Tissue Proteins - antagonists &amp; inhibitors</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Neurogenesis - physiology</topic><topic>Neurons</topic><topic>Physiological aspects</topic><topic>Pregnancy</topic><topic>Pyramidal Cells - physiology</topic><topic>RNA, Small Interfering - genetics</topic><topic>Serum Response Factor - physiology</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinheiro, Elaine M.</creatorcontrib><creatorcontrib>Xie, Zhigang</creatorcontrib><creatorcontrib>Norovich, Amy L.</creatorcontrib><creatorcontrib>Vidaki, Marina</creatorcontrib><creatorcontrib>Tsai, Li-Huei</creatorcontrib><creatorcontrib>Gertler, Frank B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinheiro, Elaine M.</au><au>Xie, Zhigang</au><au>Norovich, Amy L.</au><au>Vidaki, Marina</au><au>Tsai, Li-Huei</au><au>Gertler, Frank B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>13</volume><issue>8</issue><spage>989</spage><epage>995</epage><pages>989-995</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>During brain development, pyramidal neurons migrate from the ventricular zone to reach their final destination in the cortex. In vivo depletion experiments shows that lamellipodin, through an effect on serum response factor, determines the neuronal migration mode in the developing cortex. During corticogenesis, pyramidal neurons (∼80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia 1 , 2 , and then migrate to their proper position within the cortex 1 , 3 . As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in Caenorhabditis elegans , in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21785421</pmid><doi>10.1038/ncb2292</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2011-08, Vol.13 (8), p.989-995
issn 1465-7392
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149714
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 631/378/2571
631/80/128/1276
631/80/84
Animals
Base Sequence
Biomedical and Life Sciences
Caenorhabditis elegans
Cancer
Cancer Research
Cell Biology
Cell migration
Cell Movement - physiology
Depletion
Developmental Biology
Embryos
Female
Gene Knockdown Techniques
Genotype & phenotype
letter
Life Sciences
Mice
Models, Neurological
Nerve Tissue Proteins - antagonists & inhibitors
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - physiology
Neurogenesis - physiology
Neurons
Physiological aspects
Pregnancy
Pyramidal Cells - physiology
RNA, Small Interfering - genetics
Serum Response Factor - physiology
Stem Cells
title Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lpd%20depletion%20reveals%20that%20SRF%20specifies%20radial%20versus%20tangential%20migration%20of%20pyramidal%20neurons&rft.jtitle=Nature%20cell%20biology&rft.au=Pinheiro,%20Elaine%20M.&rft.date=2011-08-01&rft.volume=13&rft.issue=8&rft.spage=989&rft.epage=995&rft.pages=989-995&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb2292&rft_dat=%3Cgale_pubme%3EA264365522%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900176808&rft_id=info:pmid/21785421&rft_galeid=A264365522&rfr_iscdi=true