Complex Inhibitory Effects of Nitric Oxide on Autophagy

Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2011-07, Vol.43 (1), p.19-32
Hauptverfasser: Sarkar, Sovan, Korolchuk, Viktor I., Renna, Maurizio, Imarisio, Sara, Fleming, Angeleen, Williams, Andrea, Garcia-Arencibia, Moises, Rose, Claudia, Luo, Shouqing, Underwood, Benjamin R., Kroemer, Guido, O'Kane, Cahir J., Rubinsztein, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 1
container_start_page 19
container_title Molecular cell
container_volume 43
creator Sarkar, Sovan
Korolchuk, Viktor I.
Renna, Maurizio
Imarisio, Sara
Fleming, Angeleen
Williams, Andrea
Garcia-Arencibia, Moises
Rose, Claudia
Luo, Shouqing
Underwood, Benjamin R.
Kroemer, Guido
O'Kane, Cahir J.
Rubinsztein, David C.
description Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKβ. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2–Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKβ and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1–Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition. [Display omitted] ► NO inhibits autophagy by independently inhibiting JNK1 and IKKβ ► NO inhibits autophagic flux via mTOR and mTOR-independent routes ► NOS overexpression impairs autophagosome synthesis via JNK1–Bcl-2 pathway ► NOS inhibition induces autophagy and protects against neurodegeneration
doi_str_mv 10.1016/j.molcel.2011.04.029
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276511003789</els_id><sourcerecordid>875040189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-6706f50e0a2b39df671cdb77250e2ab8a04ec271b2c0b03e1cac0235a26bab963</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EoqXwDxDkBpcNM45jJxekalWgUkUP0PPIdpxdr5J4sbNV99_j1S4FLvXFlv3mzfh9jL1FKBFQftqUYxisG0oOiCWIEnj7jJ0jtGohUIrnpzNXsj5jr1LaAKCom_YlO-OouGxAnTO1DON2cA_F9bT2xs8h7ourvnd2TkXoi-9-jt4Wtw--c0WYisvdHLZrvdq_Zi96PST35rRfsLsvVz-X3xY3t1-vl5c3C1s39byQCmRfgwPNTdV2vVRoO6MUz3dcm0aDcJYrNNyCgcqh1RZ4VWsujTatrC7Y56PvdmdG11k3zVEPtI1-1HFPQXv6_2Xya1qFe6pQtFJiNvhwMojh186lmUafcmyDnlzYJWpUDQKwabPy45NKDnnxRuDBVBylNoaUousfB0KgAx3a0JEOHegQCMp0ctm7fz_zWPQHRxa8Pwp6HUivok909yM7yNwZOcr2bx4uh37vXaRkvZus63zM0KgL_ukZfgN0uat4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000028411</pqid></control><display><type>article</type><title>Complex Inhibitory Effects of Nitric Oxide on Autophagy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sarkar, Sovan ; Korolchuk, Viktor I. ; Renna, Maurizio ; Imarisio, Sara ; Fleming, Angeleen ; Williams, Andrea ; Garcia-Arencibia, Moises ; Rose, Claudia ; Luo, Shouqing ; Underwood, Benjamin R. ; Kroemer, Guido ; O'Kane, Cahir J. ; Rubinsztein, David C.</creator><creatorcontrib>Sarkar, Sovan ; Korolchuk, Viktor I. ; Renna, Maurizio ; Imarisio, Sara ; Fleming, Angeleen ; Williams, Andrea ; Garcia-Arencibia, Moises ; Rose, Claudia ; Luo, Shouqing ; Underwood, Benjamin R. ; Kroemer, Guido ; O'Kane, Cahir J. ; Rubinsztein, David C.</creatorcontrib><description>Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKβ. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2–Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKβ and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1–Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition. [Display omitted] ► NO inhibits autophagy by independently inhibiting JNK1 and IKKβ ► NO inhibits autophagic flux via mTOR and mTOR-independent routes ► NOS overexpression impairs autophagosome synthesis via JNK1–Bcl-2 pathway ► NOS inhibition induces autophagy and protects against neurodegeneration</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2011.04.029</identifier><identifier>PMID: 21726807</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Apoptosis Regulatory Proteins - metabolism ; Autophagy ; Beclin-1 ; Cell Line ; Class III Phosphatidylinositol 3-Kinases - metabolism ; endothelial nitric oxide synthase ; Enzyme Inhibitors - pharmacology ; HEK293 Cells ; HeLa Cells ; Humans ; Huntingtin Protein ; Huntington Disease - metabolism ; Huntington Disease - pathology ; I-kappa B Kinase - metabolism ; inducible nitric oxide synthase ; Mechanistic Target of Rapamycin Complex 1 ; Membrane Proteins - metabolism ; Mice ; Mitogen-Activated Protein Kinase 8 - metabolism ; Multiprotein Complexes ; Nerve Tissue Proteins - metabolism ; neurodegenerative diseases ; neuronal nitric oxide synthase ; NG-Nitroarginine Methyl Ester - pharmacology ; nitric oxide ; Nitric Oxide - biosynthesis ; Nitric Oxide - metabolism ; Nitric Oxide Synthase - antagonists &amp; inhibitors ; Nitric Oxide Synthase - metabolism ; Nuclear Proteins - metabolism ; Phosphorylation ; Protein Isoforms - metabolism ; proteins ; Proteins - metabolism ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Rats ; TOR Serine-Threonine Kinases ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Molecular cell, 2011-07, Vol.43 (1), p.19-32</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>2011 ELL &amp; Excerpta Medica. 2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-6706f50e0a2b39df671cdb77250e2ab8a04ec271b2c0b03e1cac0235a26bab963</citedby><cites>FETCH-LOGICAL-c585t-6706f50e0a2b39df671cdb77250e2ab8a04ec271b2c0b03e1cac0235a26bab963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2011.04.029$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21726807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkar, Sovan</creatorcontrib><creatorcontrib>Korolchuk, Viktor I.</creatorcontrib><creatorcontrib>Renna, Maurizio</creatorcontrib><creatorcontrib>Imarisio, Sara</creatorcontrib><creatorcontrib>Fleming, Angeleen</creatorcontrib><creatorcontrib>Williams, Andrea</creatorcontrib><creatorcontrib>Garcia-Arencibia, Moises</creatorcontrib><creatorcontrib>Rose, Claudia</creatorcontrib><creatorcontrib>Luo, Shouqing</creatorcontrib><creatorcontrib>Underwood, Benjamin R.</creatorcontrib><creatorcontrib>Kroemer, Guido</creatorcontrib><creatorcontrib>O'Kane, Cahir J.</creatorcontrib><creatorcontrib>Rubinsztein, David C.</creatorcontrib><title>Complex Inhibitory Effects of Nitric Oxide on Autophagy</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKβ. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2–Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKβ and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1–Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition. [Display omitted] ► NO inhibits autophagy by independently inhibiting JNK1 and IKKβ ► NO inhibits autophagic flux via mTOR and mTOR-independent routes ► NOS overexpression impairs autophagosome synthesis via JNK1–Bcl-2 pathway ► NOS inhibition induces autophagy and protects against neurodegeneration</description><subject>Animals</subject><subject>Apoptosis Regulatory Proteins - metabolism</subject><subject>Autophagy</subject><subject>Beclin-1</subject><subject>Cell Line</subject><subject>Class III Phosphatidylinositol 3-Kinases - metabolism</subject><subject>endothelial nitric oxide synthase</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Huntingtin Protein</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington Disease - pathology</subject><subject>I-kappa B Kinase - metabolism</subject><subject>inducible nitric oxide synthase</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinase 8 - metabolism</subject><subject>Multiprotein Complexes</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>neurodegenerative diseases</subject><subject>neuronal nitric oxide synthase</subject><subject>NG-Nitroarginine Methyl Ester - pharmacology</subject><subject>nitric oxide</subject><subject>Nitric Oxide - biosynthesis</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide Synthase - antagonists &amp; inhibitors</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Nuclear Proteins - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Isoforms - metabolism</subject><subject>proteins</subject><subject>Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Rats</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0EoqXwDxDkBpcNM45jJxekalWgUkUP0PPIdpxdr5J4sbNV99_j1S4FLvXFlv3mzfh9jL1FKBFQftqUYxisG0oOiCWIEnj7jJ0jtGohUIrnpzNXsj5jr1LaAKCom_YlO-OouGxAnTO1DON2cA_F9bT2xs8h7ourvnd2TkXoi-9-jt4Wtw--c0WYisvdHLZrvdq_Zi96PST35rRfsLsvVz-X3xY3t1-vl5c3C1s39byQCmRfgwPNTdV2vVRoO6MUz3dcm0aDcJYrNNyCgcqh1RZ4VWsujTatrC7Y56PvdmdG11k3zVEPtI1-1HFPQXv6_2Xya1qFe6pQtFJiNvhwMojh186lmUafcmyDnlzYJWpUDQKwabPy45NKDnnxRuDBVBylNoaUousfB0KgAx3a0JEOHegQCMp0ctm7fz_zWPQHRxa8Pwp6HUivok909yM7yNwZOcr2bx4uh37vXaRkvZus63zM0KgL_ukZfgN0uat4</recordid><startdate>20110708</startdate><enddate>20110708</enddate><creator>Sarkar, Sovan</creator><creator>Korolchuk, Viktor I.</creator><creator>Renna, Maurizio</creator><creator>Imarisio, Sara</creator><creator>Fleming, Angeleen</creator><creator>Williams, Andrea</creator><creator>Garcia-Arencibia, Moises</creator><creator>Rose, Claudia</creator><creator>Luo, Shouqing</creator><creator>Underwood, Benjamin R.</creator><creator>Kroemer, Guido</creator><creator>O'Kane, Cahir J.</creator><creator>Rubinsztein, David C.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110708</creationdate><title>Complex Inhibitory Effects of Nitric Oxide on Autophagy</title><author>Sarkar, Sovan ; Korolchuk, Viktor I. ; Renna, Maurizio ; Imarisio, Sara ; Fleming, Angeleen ; Williams, Andrea ; Garcia-Arencibia, Moises ; Rose, Claudia ; Luo, Shouqing ; Underwood, Benjamin R. ; Kroemer, Guido ; O'Kane, Cahir J. ; Rubinsztein, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-6706f50e0a2b39df671cdb77250e2ab8a04ec271b2c0b03e1cac0235a26bab963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Apoptosis Regulatory Proteins - metabolism</topic><topic>Autophagy</topic><topic>Beclin-1</topic><topic>Cell Line</topic><topic>Class III Phosphatidylinositol 3-Kinases - metabolism</topic><topic>endothelial nitric oxide synthase</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Huntingtin Protein</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington Disease - pathology</topic><topic>I-kappa B Kinase - metabolism</topic><topic>inducible nitric oxide synthase</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinase 8 - metabolism</topic><topic>Multiprotein Complexes</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>neurodegenerative diseases</topic><topic>neuronal nitric oxide synthase</topic><topic>NG-Nitroarginine Methyl Ester - pharmacology</topic><topic>nitric oxide</topic><topic>Nitric Oxide - biosynthesis</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide Synthase - antagonists &amp; inhibitors</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Nuclear Proteins - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Isoforms - metabolism</topic><topic>proteins</topic><topic>Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Rats</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Sovan</creatorcontrib><creatorcontrib>Korolchuk, Viktor I.</creatorcontrib><creatorcontrib>Renna, Maurizio</creatorcontrib><creatorcontrib>Imarisio, Sara</creatorcontrib><creatorcontrib>Fleming, Angeleen</creatorcontrib><creatorcontrib>Williams, Andrea</creatorcontrib><creatorcontrib>Garcia-Arencibia, Moises</creatorcontrib><creatorcontrib>Rose, Claudia</creatorcontrib><creatorcontrib>Luo, Shouqing</creatorcontrib><creatorcontrib>Underwood, Benjamin R.</creatorcontrib><creatorcontrib>Kroemer, Guido</creatorcontrib><creatorcontrib>O'Kane, Cahir J.</creatorcontrib><creatorcontrib>Rubinsztein, David C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Sovan</au><au>Korolchuk, Viktor I.</au><au>Renna, Maurizio</au><au>Imarisio, Sara</au><au>Fleming, Angeleen</au><au>Williams, Andrea</au><au>Garcia-Arencibia, Moises</au><au>Rose, Claudia</au><au>Luo, Shouqing</au><au>Underwood, Benjamin R.</au><au>Kroemer, Guido</au><au>O'Kane, Cahir J.</au><au>Rubinsztein, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Inhibitory Effects of Nitric Oxide on Autophagy</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2011-07-08</date><risdate>2011</risdate><volume>43</volume><issue>1</issue><spage>19</spage><epage>32</epage><pages>19-32</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKβ. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2–Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKβ and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1–Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition. [Display omitted] ► NO inhibits autophagy by independently inhibiting JNK1 and IKKβ ► NO inhibits autophagic flux via mTOR and mTOR-independent routes ► NOS overexpression impairs autophagosome synthesis via JNK1–Bcl-2 pathway ► NOS inhibition induces autophagy and protects against neurodegeneration</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21726807</pmid><doi>10.1016/j.molcel.2011.04.029</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2011-07, Vol.43 (1), p.19-32
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149661
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Animals
Apoptosis Regulatory Proteins - metabolism
Autophagy
Beclin-1
Cell Line
Class III Phosphatidylinositol 3-Kinases - metabolism
endothelial nitric oxide synthase
Enzyme Inhibitors - pharmacology
HEK293 Cells
HeLa Cells
Humans
Huntingtin Protein
Huntington Disease - metabolism
Huntington Disease - pathology
I-kappa B Kinase - metabolism
inducible nitric oxide synthase
Mechanistic Target of Rapamycin Complex 1
Membrane Proteins - metabolism
Mice
Mitogen-Activated Protein Kinase 8 - metabolism
Multiprotein Complexes
Nerve Tissue Proteins - metabolism
neurodegenerative diseases
neuronal nitric oxide synthase
NG-Nitroarginine Methyl Ester - pharmacology
nitric oxide
Nitric Oxide - biosynthesis
Nitric Oxide - metabolism
Nitric Oxide Synthase - antagonists & inhibitors
Nitric Oxide Synthase - metabolism
Nuclear Proteins - metabolism
Phosphorylation
Protein Isoforms - metabolism
proteins
Proteins - metabolism
Proto-Oncogene Proteins c-bcl-2 - metabolism
Rats
TOR Serine-Threonine Kinases
Tumor Suppressor Proteins - metabolism
title Complex Inhibitory Effects of Nitric Oxide on Autophagy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Inhibitory%20Effects%20of%20Nitric%20Oxide%20on%20Autophagy&rft.jtitle=Molecular%20cell&rft.au=Sarkar,%20Sovan&rft.date=2011-07-08&rft.volume=43&rft.issue=1&rft.spage=19&rft.epage=32&rft.pages=19-32&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2011.04.029&rft_dat=%3Cproquest_pubme%3E875040189%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000028411&rft_id=info:pmid/21726807&rft_els_id=S1097276511003789&rfr_iscdi=true