Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy

The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a port...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2011-05, Vol.100 (9), p.2226-2233
Hauptverfasser: Cohen Stuart, Thomas A., Vengris, Mikas, Novoderezhkin, Vladimir I., Cogdell, Richard J., Hunter, C. Neil, van Grondelle, Rienk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2233
container_issue 9
container_start_page 2226
container_title Biophysical journal
container_volume 100
creator Cohen Stuart, Thomas A.
Vengris, Mikas
Novoderezhkin, Vladimir I.
Cogdell, Richard J.
Hunter, C. Neil
van Grondelle, Rienk
description The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a portion of the excited state. By selective dumping, we can disentangle the dynamics normally hidden in the excited-state manifold. We find that by using this multiple-excitation technique we can visualize a 400-fs reequilibration reflecting relaxation between the two lowest exciton states that cannot be directly explored by conventional pump-probe. An oscillatory feature is observed within the exciton reequilibration, which is attributed to a coherent motion of a vibrational wavepacket with a period of ∼150 fs. Our disordered exciton model allows a quantitative interpretation of the observed reequilibration processes occurring in these antennas.
doi_str_mv 10.1016/j.bpj.2011.02.048
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349511002992</els_id><sourcerecordid>907161605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626t-236377583b1338ac824d0d959a7264be8dda47ff5f470325ae15067a00a728f63</originalsourceid><addsrcrecordid>eNqFksFu1DAQhiMEoqXwAFwg4sJpl7Ed24mQkNBSKNIipJZytRxn0vUqG6d2UnU58uTMsmWBC5xseb6Z8fzzZ9lTBnMGTL1az-thPefA2Bz4HIryXnbMZMFnAKW6nx0DgJqJopJH2aOU1gCMS2APsyPOpKh0xY6z7-98RDfmX32abOe_2dGHPg9tfnrr_EjXc8TryXe-jvuQ7_NxhfnyjOW2b-jk-SJshg5vMe3yzlehCbV1I8Y8DSuLMfiGQvU2_zR1ox-mLmF-MVDTGJILw_Zx9qC19Pjk7jzJLt-fflmczZafP3xcvF3OnOJqnHGhhNayFDUTorSu5EUDTSUrq7kqaiybxha6bWVbaBBcWmQSlLYABJStEifZm33dYao32Djsx2g7M0S_sXFrgvXm70jvV-Yq3BjBioorQQVe7AuENHqTSB90Kxf6nmYxDJSUYge9vOsSw_WEaTQbnxx2ne0xTMlUoJliCuR_yVLR5qoC4HfjA7kOU-xJLIK05EJDSRDbQ450TRHbw2QMzM4uZm3ILmZnFwPckF0o59mfkhwyfvmDgOd7oLXB2Kvok7m8oAqSvMSYVpqI13sCaXU3HuNOGOwdNj-NZZrg__GBH_t72Zc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867523708</pqid></control><display><type>article</type><title>Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cohen Stuart, Thomas A. ; Vengris, Mikas ; Novoderezhkin, Vladimir I. ; Cogdell, Richard J. ; Hunter, C. Neil ; van Grondelle, Rienk</creator><creatorcontrib>Cohen Stuart, Thomas A. ; Vengris, Mikas ; Novoderezhkin, Vladimir I. ; Cogdell, Richard J. ; Hunter, C. Neil ; van Grondelle, Rienk ; Energy Frontier Research Centers (EFRC) ; Photosynthetic Antenna Research Center (PARC)</creatorcontrib><description>The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a portion of the excited state. By selective dumping, we can disentangle the dynamics normally hidden in the excited-state manifold. We find that by using this multiple-excitation technique we can visualize a 400-fs reequilibration reflecting relaxation between the two lowest exciton states that cannot be directly explored by conventional pump-probe. An oscillatory feature is observed within the exciton reequilibration, which is attributed to a coherent motion of a vibrational wavepacket with a period of ∼150 fs. Our disordered exciton model allows a quantitative interpretation of the observed reequilibration processes occurring in these antennas.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2011.02.048</identifier><identifier>PMID: 21539791</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Biophysics ; Electrons ; Experiments ; Gram-negative bacteria ; Kinetics ; Light-Harvesting Protein Complexes - chemistry ; Protein ; Protein Conformation ; Rhodobacter sphaeroides ; Rhodobacter sphaeroides - metabolism ; solar (fuels), photosynthesis (natural and artificial), biofuels (including algae and biomass), bio-inspired, charge transport, membrane, synthesis (novel materials), synthesis (self-assembly) ; spectroscopy ; Spectrum analysis ; Spectrum Analysis - methods ; Thermodynamics ; Vibration</subject><ispartof>Biophysical journal, 2011-05, Vol.100 (9), p.2226-2233</ispartof><rights>2011 Biophysical Society</rights><rights>Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society May 4, 2011</rights><rights>2011 by the Biophysical Society. 2011 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c626t-236377583b1338ac824d0d959a7264be8dda47ff5f470325ae15067a00a728f63</citedby><cites>FETCH-LOGICAL-c626t-236377583b1338ac824d0d959a7264be8dda47ff5f470325ae15067a00a728f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149263/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349511002992$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27903,27904,53768,53770,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21539791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1065533$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen Stuart, Thomas A.</creatorcontrib><creatorcontrib>Vengris, Mikas</creatorcontrib><creatorcontrib>Novoderezhkin, Vladimir I.</creatorcontrib><creatorcontrib>Cogdell, Richard J.</creatorcontrib><creatorcontrib>Hunter, C. Neil</creatorcontrib><creatorcontrib>van Grondelle, Rienk</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Photosynthetic Antenna Research Center (PARC)</creatorcontrib><title>Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a portion of the excited state. By selective dumping, we can disentangle the dynamics normally hidden in the excited-state manifold. We find that by using this multiple-excitation technique we can visualize a 400-fs reequilibration reflecting relaxation between the two lowest exciton states that cannot be directly explored by conventional pump-probe. An oscillatory feature is observed within the exciton reequilibration, which is attributed to a coherent motion of a vibrational wavepacket with a period of ∼150 fs. Our disordered exciton model allows a quantitative interpretation of the observed reequilibration processes occurring in these antennas.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biophysics</subject><subject>Electrons</subject><subject>Experiments</subject><subject>Gram-negative bacteria</subject><subject>Kinetics</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Protein</subject><subject>Protein Conformation</subject><subject>Rhodobacter sphaeroides</subject><subject>Rhodobacter sphaeroides - metabolism</subject><subject>solar (fuels), photosynthesis (natural and artificial), biofuels (including algae and biomass), bio-inspired, charge transport, membrane, synthesis (novel materials), synthesis (self-assembly)</subject><subject>spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis - methods</subject><subject>Thermodynamics</subject><subject>Vibration</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksFu1DAQhiMEoqXwAFwg4sJpl7Ed24mQkNBSKNIipJZytRxn0vUqG6d2UnU58uTMsmWBC5xseb6Z8fzzZ9lTBnMGTL1az-thPefA2Bz4HIryXnbMZMFnAKW6nx0DgJqJopJH2aOU1gCMS2APsyPOpKh0xY6z7-98RDfmX32abOe_2dGHPg9tfnrr_EjXc8TryXe-jvuQ7_NxhfnyjOW2b-jk-SJshg5vMe3yzlehCbV1I8Y8DSuLMfiGQvU2_zR1ox-mLmF-MVDTGJILw_Zx9qC19Pjk7jzJLt-fflmczZafP3xcvF3OnOJqnHGhhNayFDUTorSu5EUDTSUrq7kqaiybxha6bWVbaBBcWmQSlLYABJStEifZm33dYao32Djsx2g7M0S_sXFrgvXm70jvV-Yq3BjBioorQQVe7AuENHqTSB90Kxf6nmYxDJSUYge9vOsSw_WEaTQbnxx2ne0xTMlUoJliCuR_yVLR5qoC4HfjA7kOU-xJLIK05EJDSRDbQ450TRHbw2QMzM4uZm3ILmZnFwPckF0o59mfkhwyfvmDgOd7oLXB2Kvok7m8oAqSvMSYVpqI13sCaXU3HuNOGOwdNj-NZZrg__GBH_t72Zc</recordid><startdate>20110504</startdate><enddate>20110504</enddate><creator>Cohen Stuart, Thomas A.</creator><creator>Vengris, Mikas</creator><creator>Novoderezhkin, Vladimir I.</creator><creator>Cogdell, Richard J.</creator><creator>Hunter, C. Neil</creator><creator>van Grondelle, Rienk</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>Elsevier</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20110504</creationdate><title>Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy</title><author>Cohen Stuart, Thomas A. ; Vengris, Mikas ; Novoderezhkin, Vladimir I. ; Cogdell, Richard J. ; Hunter, C. Neil ; van Grondelle, Rienk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626t-236377583b1338ac824d0d959a7264be8dda47ff5f470325ae15067a00a728f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biophysics</topic><topic>Electrons</topic><topic>Experiments</topic><topic>Gram-negative bacteria</topic><topic>Kinetics</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Protein</topic><topic>Protein Conformation</topic><topic>Rhodobacter sphaeroides</topic><topic>Rhodobacter sphaeroides - metabolism</topic><topic>solar (fuels), photosynthesis (natural and artificial), biofuels (including algae and biomass), bio-inspired, charge transport, membrane, synthesis (novel materials), synthesis (self-assembly)</topic><topic>spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis - methods</topic><topic>Thermodynamics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen Stuart, Thomas A.</creatorcontrib><creatorcontrib>Vengris, Mikas</creatorcontrib><creatorcontrib>Novoderezhkin, Vladimir I.</creatorcontrib><creatorcontrib>Cogdell, Richard J.</creatorcontrib><creatorcontrib>Hunter, C. Neil</creatorcontrib><creatorcontrib>van Grondelle, Rienk</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Photosynthetic Antenna Research Center (PARC)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen Stuart, Thomas A.</au><au>Vengris, Mikas</au><au>Novoderezhkin, Vladimir I.</au><au>Cogdell, Richard J.</au><au>Hunter, C. Neil</au><au>van Grondelle, Rienk</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Photosynthetic Antenna Research Center (PARC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2011-05-04</date><risdate>2011</risdate><volume>100</volume><issue>9</issue><spage>2226</spage><epage>2233</epage><pages>2226-2233</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a portion of the excited state. By selective dumping, we can disentangle the dynamics normally hidden in the excited-state manifold. We find that by using this multiple-excitation technique we can visualize a 400-fs reequilibration reflecting relaxation between the two lowest exciton states that cannot be directly explored by conventional pump-probe. An oscillatory feature is observed within the exciton reequilibration, which is attributed to a coherent motion of a vibrational wavepacket with a period of ∼150 fs. Our disordered exciton model allows a quantitative interpretation of the observed reequilibration processes occurring in these antennas.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21539791</pmid><doi>10.1016/j.bpj.2011.02.048</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2011-05, Vol.100 (9), p.2226-2233
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149263
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects BASIC BIOLOGICAL SCIENCES
Biophysics
Electrons
Experiments
Gram-negative bacteria
Kinetics
Light-Harvesting Protein Complexes - chemistry
Protein
Protein Conformation
Rhodobacter sphaeroides
Rhodobacter sphaeroides - metabolism
solar (fuels), photosynthesis (natural and artificial), biofuels (including algae and biomass), bio-inspired, charge transport, membrane, synthesis (novel materials), synthesis (self-assembly)
spectroscopy
Spectrum analysis
Spectrum Analysis - methods
Thermodynamics
Vibration
title Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Visualization%20of%20Exciton%20Reequilibration%20in%20the%20LH1%20and%20LH2%20Complexes%20of%20Rhodobacter%20sphaeroides%20by%20Multipulse%20Spectroscopy&rft.jtitle=Biophysical%20journal&rft.au=Cohen%C2%A0Stuart,%20Thomas%C2%A0A.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2011-05-04&rft.volume=100&rft.issue=9&rft.spage=2226&rft.epage=2233&rft.pages=2226-2233&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2011.02.048&rft_dat=%3Cproquest_pubme%3E907161605%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867523708&rft_id=info:pmid/21539791&rft_els_id=S0006349511002992&rfr_iscdi=true