Revisiting the Ramachandran plot from a new angle

The pioneering work of Ramachandran and colleagues emphasized the dominance of steric constraints in specifying the structure of polypeptides. The ubiquitous Ramachandran plot of backbone dihedral angles (ϕ and ψ) defined the allowed regions of conformational space. These predictions were subsequent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2011-07, Vol.20 (7), p.1166-1171
Hauptverfasser: Zhou, Alice Qinhua, O'Hern, Corey S., Regan, Lynne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pioneering work of Ramachandran and colleagues emphasized the dominance of steric constraints in specifying the structure of polypeptides. The ubiquitous Ramachandran plot of backbone dihedral angles (ϕ and ψ) defined the allowed regions of conformational space. These predictions were subsequently confirmed in proteins of known structure. Ramachandran and colleagues also investigated the influence of the backbone angle τ on the distribution of allowed ϕ/ψ combinations. The “bridge region” (ϕ ≤ 0° and −20° ≤ ψ ≤ 40°) was predicted to be particularly sensitive to the value of τ. Here we present an analysis of the distribution of ϕ/ψ angles in 850 non‐homologous proteins whose structures are known to a resolution of 1.7 Å or less and sidechain B‐factor less than 30 Å2. We show that the distribution of ϕ/ψ angles for all 87,000 residues in these proteins shows the same dependence on τ as predicted by Ramachandran and colleagues. Our results are important because they make clear that steric constraints alone are sufficient to explain the backbone dihedral angle distributions observed in proteins. Contrary to recent suggestions, no additional energetic contributions, such as hydrogen bonding, need be invoked.
ISSN:0961-8368
1469-896X
DOI:10.1002/pro.644