BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis
Induction of new bone formation is frequently seen in the bone lesions from prostate cancer. However, whether osteogenesis is necessary for prostate tumor growth in bone is unknown. Recently, 2 xenografts, MDA-PCa-118b and MDA-PCa-133, were generated from prostate cancer bone metastases. When implan...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2011-08, Vol.71 (15), p.5194-5203 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5203 |
---|---|
container_issue | 15 |
container_start_page | 5194 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 71 |
creator | LEE, Yu-Chen CHENG, Chien-Jui BILEN, Mehmet A LU, Jing-Fang SATCHER, Robert L YU-LEE, Li-Yuan GALLICK, Gary E MAITY, Sankar N LIN, Sue-Hwa |
description | Induction of new bone formation is frequently seen in the bone lesions from prostate cancer. However, whether osteogenesis is necessary for prostate tumor growth in bone is unknown. Recently, 2 xenografts, MDA-PCa-118b and MDA-PCa-133, were generated from prostate cancer bone metastases. When implanted subcutaneously in severe combined immunodeficient (SCID) mice, MDA-PCa-118b induced strong ectopic bone formation while MDA-PCa-133 did not. To identify the factors that are involved in bone formation, we compared the expression of secreted factors (secretome) from MDA-PCa-118b and MDA-PCa-133 by cytokine array. We found that the osteogenic MDA-PCa-118b xenograft expressed higher levels of bone morphogenetic protein BMP4 and several cytokines including interleukin-8, growth-related protein (GRO), and CCL2. We showed that BMP4 secreted from MDA-PCa-118b contributed to about a third of the osteogenic differentiation seen in MDA-PCa-118b tumors. The conditioned media from MDA-PCa-118b induced a higher level of osteoblast differentiation, which was significantly reduced by treatment with BMP4 neutralizing antibody or the small molecule BMP receptor 1 inhibitor LDN-193189. BMP4 did not elicit an autocrine effect on MDA-PCa-118b, which expressed low to undetectable levels of BMP receptors. Treatment of SCID mice bearing MDA-PCa-118b tumors with LDN-193189 significantly reduced tumor growth. Thus, these studies support a role of BMP4-mediated osteogenesis in the progression of prostate cancer in bone. |
doi_str_mv | 10.1158/0008-5472.can-10-4374 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3148283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1171891327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-556403f69615f83b80117175dd4eb15fbd5617640770909d10cdc096232f4e143</originalsourceid><addsrcrecordid>eNp9kU1PxCAQhonR6PrxEzS9GL1UmQKFXozrxq_Er4OeCUvpbk1bFKjGfy-N66oXTwwzz7yZmRehXcBHAEwcY4xFyijPjrTqUsApJZyuoBEwIlJOKVtFoyWzgTa9f45fBpito40Mch5rMEKnZ7cPNHlwtrXB-CHwQQWTPPatdcmls-9hntRdcmY7k4S5s_1sntz7YOzMdMbXfhutVarxZmfxbqGni_PHyVV6c395PRnfpJoVEFLGcopJlRc5sEqQqcAAHDgrS2qmMTUtWQ48MpzjAhclYF1qXOQZySpqgJItdPKl-9JPW1Nq0wWnGvni6la5D2lVLf9WunouZ_ZNEqAiEyQKHCwEnH3tjQ-yrb02TaM6Y3svhcAc8oyySB7-Sw6TiwJIxiPKvlAdD-edqZYDAZaDT3LwQA4eyMn4bsgOPsW-vd_bLLu-jYnA_gJQXqumcqrTtf_hKMU0h4J8Au7smeE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1171891327</pqid></control><display><type>article</type><title>BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>LEE, Yu-Chen ; CHENG, Chien-Jui ; BILEN, Mehmet A ; LU, Jing-Fang ; SATCHER, Robert L ; YU-LEE, Li-Yuan ; GALLICK, Gary E ; MAITY, Sankar N ; LIN, Sue-Hwa</creator><creatorcontrib>LEE, Yu-Chen ; CHENG, Chien-Jui ; BILEN, Mehmet A ; LU, Jing-Fang ; SATCHER, Robert L ; YU-LEE, Li-Yuan ; GALLICK, Gary E ; MAITY, Sankar N ; LIN, Sue-Hwa</creatorcontrib><description>Induction of new bone formation is frequently seen in the bone lesions from prostate cancer. However, whether osteogenesis is necessary for prostate tumor growth in bone is unknown. Recently, 2 xenografts, MDA-PCa-118b and MDA-PCa-133, were generated from prostate cancer bone metastases. When implanted subcutaneously in severe combined immunodeficient (SCID) mice, MDA-PCa-118b induced strong ectopic bone formation while MDA-PCa-133 did not. To identify the factors that are involved in bone formation, we compared the expression of secreted factors (secretome) from MDA-PCa-118b and MDA-PCa-133 by cytokine array. We found that the osteogenic MDA-PCa-118b xenograft expressed higher levels of bone morphogenetic protein BMP4 and several cytokines including interleukin-8, growth-related protein (GRO), and CCL2. We showed that BMP4 secreted from MDA-PCa-118b contributed to about a third of the osteogenic differentiation seen in MDA-PCa-118b tumors. The conditioned media from MDA-PCa-118b induced a higher level of osteoblast differentiation, which was significantly reduced by treatment with BMP4 neutralizing antibody or the small molecule BMP receptor 1 inhibitor LDN-193189. BMP4 did not elicit an autocrine effect on MDA-PCa-118b, which expressed low to undetectable levels of BMP receptors. Treatment of SCID mice bearing MDA-PCa-118b tumors with LDN-193189 significantly reduced tumor growth. Thus, these studies support a role of BMP4-mediated osteogenesis in the progression of prostate cancer in bone.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-10-4374</identifier><identifier>PMID: 21670081</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Adenocarcinoma - drug therapy ; Adenocarcinoma - secondary ; Adenocarcinoma - secretion ; Animals ; Antibodies ; Antineoplastic agents ; Autocrine Communication ; Autocrine signalling ; Biological and medical sciences ; Bone cancer ; Bone growth ; Bone morphogenetic protein 4 ; Bone Morphogenetic Protein 4 - antagonists & inhibitors ; Bone Morphogenetic Protein 4 - physiology ; Bone Morphogenetic Protein 4 - secretion ; Bone Morphogenetic Protein Receptors, Type I - antagonists & inhibitors ; Bone Morphogenetic Protein Receptors, Type I - biosynthesis ; Bone morphogenetic proteins ; Bone Neoplasms - drug therapy ; Bone Neoplasms - physiopathology ; Bone Neoplasms - secondary ; Bone tumors ; Cell Line, Tumor - drug effects ; Cell Line, Tumor - secretion ; Cell Line, Tumor - transplantation ; Culture Media, Conditioned - pharmacology ; Cytokines - pharmacology ; Cytokines - secretion ; Gynecology. Andrology. Obstetrics ; Humans ; Immunodeficiency ; Intercellular Signaling Peptides and Proteins - pharmacology ; Intercellular Signaling Peptides and Proteins - secretion ; Interleukin 8 ; Male ; Male genital diseases ; Medical sciences ; Metastases ; Mice ; Mice, SCID ; Monocyte chemoattractant protein 1 ; Neoplasm Proteins - physiology ; Neoplasm Proteins - secretion ; Nephrology. Urinary tract diseases ; Ossification (ectopic) ; Ossification, Heterotopic - etiology ; Osteoblastogenesis ; Osteoblasts - drug effects ; Osteogenesis ; Osteogenesis - drug effects ; Pharmacology. Drug treatments ; Prostate cancer ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - secretion ; Pyrazoles - pharmacology ; Pyrazoles - therapeutic use ; Pyrimidines - pharmacology ; Pyrimidines - therapeutic use ; Recombinant Proteins - pharmacology ; secretome ; Subcutaneous Tissue ; Tumors ; Tumors of the urinary system ; Urinary tract. Prostate gland ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Cancer research (Chicago, Ill.), 2011-08, Vol.71 (15), p.5194-5203</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-556403f69615f83b80117175dd4eb15fbd5617640770909d10cdc096232f4e143</citedby><cites>FETCH-LOGICAL-c591t-556403f69615f83b80117175dd4eb15fbd5617640770909d10cdc096232f4e143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24404619$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21670081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LEE, Yu-Chen</creatorcontrib><creatorcontrib>CHENG, Chien-Jui</creatorcontrib><creatorcontrib>BILEN, Mehmet A</creatorcontrib><creatorcontrib>LU, Jing-Fang</creatorcontrib><creatorcontrib>SATCHER, Robert L</creatorcontrib><creatorcontrib>YU-LEE, Li-Yuan</creatorcontrib><creatorcontrib>GALLICK, Gary E</creatorcontrib><creatorcontrib>MAITY, Sankar N</creatorcontrib><creatorcontrib>LIN, Sue-Hwa</creatorcontrib><title>BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Induction of new bone formation is frequently seen in the bone lesions from prostate cancer. However, whether osteogenesis is necessary for prostate tumor growth in bone is unknown. Recently, 2 xenografts, MDA-PCa-118b and MDA-PCa-133, were generated from prostate cancer bone metastases. When implanted subcutaneously in severe combined immunodeficient (SCID) mice, MDA-PCa-118b induced strong ectopic bone formation while MDA-PCa-133 did not. To identify the factors that are involved in bone formation, we compared the expression of secreted factors (secretome) from MDA-PCa-118b and MDA-PCa-133 by cytokine array. We found that the osteogenic MDA-PCa-118b xenograft expressed higher levels of bone morphogenetic protein BMP4 and several cytokines including interleukin-8, growth-related protein (GRO), and CCL2. We showed that BMP4 secreted from MDA-PCa-118b contributed to about a third of the osteogenic differentiation seen in MDA-PCa-118b tumors. The conditioned media from MDA-PCa-118b induced a higher level of osteoblast differentiation, which was significantly reduced by treatment with BMP4 neutralizing antibody or the small molecule BMP receptor 1 inhibitor LDN-193189. BMP4 did not elicit an autocrine effect on MDA-PCa-118b, which expressed low to undetectable levels of BMP receptors. Treatment of SCID mice bearing MDA-PCa-118b tumors with LDN-193189 significantly reduced tumor growth. Thus, these studies support a role of BMP4-mediated osteogenesis in the progression of prostate cancer in bone.</description><subject>Adenocarcinoma - drug therapy</subject><subject>Adenocarcinoma - secondary</subject><subject>Adenocarcinoma - secretion</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antineoplastic agents</subject><subject>Autocrine Communication</subject><subject>Autocrine signalling</subject><subject>Biological and medical sciences</subject><subject>Bone cancer</subject><subject>Bone growth</subject><subject>Bone morphogenetic protein 4</subject><subject>Bone Morphogenetic Protein 4 - antagonists & inhibitors</subject><subject>Bone Morphogenetic Protein 4 - physiology</subject><subject>Bone Morphogenetic Protein 4 - secretion</subject><subject>Bone Morphogenetic Protein Receptors, Type I - antagonists & inhibitors</subject><subject>Bone Morphogenetic Protein Receptors, Type I - biosynthesis</subject><subject>Bone morphogenetic proteins</subject><subject>Bone Neoplasms - drug therapy</subject><subject>Bone Neoplasms - physiopathology</subject><subject>Bone Neoplasms - secondary</subject><subject>Bone tumors</subject><subject>Cell Line, Tumor - drug effects</subject><subject>Cell Line, Tumor - secretion</subject><subject>Cell Line, Tumor - transplantation</subject><subject>Culture Media, Conditioned - pharmacology</subject><subject>Cytokines - pharmacology</subject><subject>Cytokines - secretion</subject><subject>Gynecology. Andrology. Obstetrics</subject><subject>Humans</subject><subject>Immunodeficiency</subject><subject>Intercellular Signaling Peptides and Proteins - pharmacology</subject><subject>Intercellular Signaling Peptides and Proteins - secretion</subject><subject>Interleukin 8</subject><subject>Male</subject><subject>Male genital diseases</subject><subject>Medical sciences</subject><subject>Metastases</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Neoplasm Proteins - physiology</subject><subject>Neoplasm Proteins - secretion</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Ossification (ectopic)</subject><subject>Ossification, Heterotopic - etiology</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts - drug effects</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Pharmacology. Drug treatments</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - secretion</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrazoles - therapeutic use</subject><subject>Pyrimidines - pharmacology</subject><subject>Pyrimidines - therapeutic use</subject><subject>Recombinant Proteins - pharmacology</subject><subject>secretome</subject><subject>Subcutaneous Tissue</subject><subject>Tumors</subject><subject>Tumors of the urinary system</subject><subject>Urinary tract. Prostate gland</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1PxCAQhonR6PrxEzS9GL1UmQKFXozrxq_Er4OeCUvpbk1bFKjGfy-N66oXTwwzz7yZmRehXcBHAEwcY4xFyijPjrTqUsApJZyuoBEwIlJOKVtFoyWzgTa9f45fBpito40Mch5rMEKnZ7cPNHlwtrXB-CHwQQWTPPatdcmls-9hntRdcmY7k4S5s_1sntz7YOzMdMbXfhutVarxZmfxbqGni_PHyVV6c395PRnfpJoVEFLGcopJlRc5sEqQqcAAHDgrS2qmMTUtWQ48MpzjAhclYF1qXOQZySpqgJItdPKl-9JPW1Nq0wWnGvni6la5D2lVLf9WunouZ_ZNEqAiEyQKHCwEnH3tjQ-yrb02TaM6Y3svhcAc8oyySB7-Sw6TiwJIxiPKvlAdD-edqZYDAZaDT3LwQA4eyMn4bsgOPsW-vd_bLLu-jYnA_gJQXqumcqrTtf_hKMU0h4J8Au7smeE</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>LEE, Yu-Chen</creator><creator>CHENG, Chien-Jui</creator><creator>BILEN, Mehmet A</creator><creator>LU, Jing-Fang</creator><creator>SATCHER, Robert L</creator><creator>YU-LEE, Li-Yuan</creator><creator>GALLICK, Gary E</creator><creator>MAITY, Sankar N</creator><creator>LIN, Sue-Hwa</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110801</creationdate><title>BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis</title><author>LEE, Yu-Chen ; CHENG, Chien-Jui ; BILEN, Mehmet A ; LU, Jing-Fang ; SATCHER, Robert L ; YU-LEE, Li-Yuan ; GALLICK, Gary E ; MAITY, Sankar N ; LIN, Sue-Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-556403f69615f83b80117175dd4eb15fbd5617640770909d10cdc096232f4e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenocarcinoma - drug therapy</topic><topic>Adenocarcinoma - secondary</topic><topic>Adenocarcinoma - secretion</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antineoplastic agents</topic><topic>Autocrine Communication</topic><topic>Autocrine signalling</topic><topic>Biological and medical sciences</topic><topic>Bone cancer</topic><topic>Bone growth</topic><topic>Bone morphogenetic protein 4</topic><topic>Bone Morphogenetic Protein 4 - antagonists & inhibitors</topic><topic>Bone Morphogenetic Protein 4 - physiology</topic><topic>Bone Morphogenetic Protein 4 - secretion</topic><topic>Bone Morphogenetic Protein Receptors, Type I - antagonists & inhibitors</topic><topic>Bone Morphogenetic Protein Receptors, Type I - biosynthesis</topic><topic>Bone morphogenetic proteins</topic><topic>Bone Neoplasms - drug therapy</topic><topic>Bone Neoplasms - physiopathology</topic><topic>Bone Neoplasms - secondary</topic><topic>Bone tumors</topic><topic>Cell Line, Tumor - drug effects</topic><topic>Cell Line, Tumor - secretion</topic><topic>Cell Line, Tumor - transplantation</topic><topic>Culture Media, Conditioned - pharmacology</topic><topic>Cytokines - pharmacology</topic><topic>Cytokines - secretion</topic><topic>Gynecology. Andrology. Obstetrics</topic><topic>Humans</topic><topic>Immunodeficiency</topic><topic>Intercellular Signaling Peptides and Proteins - pharmacology</topic><topic>Intercellular Signaling Peptides and Proteins - secretion</topic><topic>Interleukin 8</topic><topic>Male</topic><topic>Male genital diseases</topic><topic>Medical sciences</topic><topic>Metastases</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Neoplasm Proteins - physiology</topic><topic>Neoplasm Proteins - secretion</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Ossification (ectopic)</topic><topic>Ossification, Heterotopic - etiology</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts - drug effects</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Pharmacology. Drug treatments</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - secretion</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrazoles - therapeutic use</topic><topic>Pyrimidines - pharmacology</topic><topic>Pyrimidines - therapeutic use</topic><topic>Recombinant Proteins - pharmacology</topic><topic>secretome</topic><topic>Subcutaneous Tissue</topic><topic>Tumors</topic><topic>Tumors of the urinary system</topic><topic>Urinary tract. Prostate gland</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEE, Yu-Chen</creatorcontrib><creatorcontrib>CHENG, Chien-Jui</creatorcontrib><creatorcontrib>BILEN, Mehmet A</creatorcontrib><creatorcontrib>LU, Jing-Fang</creatorcontrib><creatorcontrib>SATCHER, Robert L</creatorcontrib><creatorcontrib>YU-LEE, Li-Yuan</creatorcontrib><creatorcontrib>GALLICK, Gary E</creatorcontrib><creatorcontrib>MAITY, Sankar N</creatorcontrib><creatorcontrib>LIN, Sue-Hwa</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEE, Yu-Chen</au><au>CHENG, Chien-Jui</au><au>BILEN, Mehmet A</au><au>LU, Jing-Fang</au><au>SATCHER, Robert L</au><au>YU-LEE, Li-Yuan</au><au>GALLICK, Gary E</au><au>MAITY, Sankar N</au><au>LIN, Sue-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>71</volume><issue>15</issue><spage>5194</spage><epage>5203</epage><pages>5194-5203</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>Induction of new bone formation is frequently seen in the bone lesions from prostate cancer. However, whether osteogenesis is necessary for prostate tumor growth in bone is unknown. Recently, 2 xenografts, MDA-PCa-118b and MDA-PCa-133, were generated from prostate cancer bone metastases. When implanted subcutaneously in severe combined immunodeficient (SCID) mice, MDA-PCa-118b induced strong ectopic bone formation while MDA-PCa-133 did not. To identify the factors that are involved in bone formation, we compared the expression of secreted factors (secretome) from MDA-PCa-118b and MDA-PCa-133 by cytokine array. We found that the osteogenic MDA-PCa-118b xenograft expressed higher levels of bone morphogenetic protein BMP4 and several cytokines including interleukin-8, growth-related protein (GRO), and CCL2. We showed that BMP4 secreted from MDA-PCa-118b contributed to about a third of the osteogenic differentiation seen in MDA-PCa-118b tumors. The conditioned media from MDA-PCa-118b induced a higher level of osteoblast differentiation, which was significantly reduced by treatment with BMP4 neutralizing antibody or the small molecule BMP receptor 1 inhibitor LDN-193189. BMP4 did not elicit an autocrine effect on MDA-PCa-118b, which expressed low to undetectable levels of BMP receptors. Treatment of SCID mice bearing MDA-PCa-118b tumors with LDN-193189 significantly reduced tumor growth. Thus, these studies support a role of BMP4-mediated osteogenesis in the progression of prostate cancer in bone.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>21670081</pmid><doi>10.1158/0008-5472.can-10-4374</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2011-08, Vol.71 (15), p.5194-5203 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3148283 |
source | MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adenocarcinoma - drug therapy Adenocarcinoma - secondary Adenocarcinoma - secretion Animals Antibodies Antineoplastic agents Autocrine Communication Autocrine signalling Biological and medical sciences Bone cancer Bone growth Bone morphogenetic protein 4 Bone Morphogenetic Protein 4 - antagonists & inhibitors Bone Morphogenetic Protein 4 - physiology Bone Morphogenetic Protein 4 - secretion Bone Morphogenetic Protein Receptors, Type I - antagonists & inhibitors Bone Morphogenetic Protein Receptors, Type I - biosynthesis Bone morphogenetic proteins Bone Neoplasms - drug therapy Bone Neoplasms - physiopathology Bone Neoplasms - secondary Bone tumors Cell Line, Tumor - drug effects Cell Line, Tumor - secretion Cell Line, Tumor - transplantation Culture Media, Conditioned - pharmacology Cytokines - pharmacology Cytokines - secretion Gynecology. Andrology. Obstetrics Humans Immunodeficiency Intercellular Signaling Peptides and Proteins - pharmacology Intercellular Signaling Peptides and Proteins - secretion Interleukin 8 Male Male genital diseases Medical sciences Metastases Mice Mice, SCID Monocyte chemoattractant protein 1 Neoplasm Proteins - physiology Neoplasm Proteins - secretion Nephrology. Urinary tract diseases Ossification (ectopic) Ossification, Heterotopic - etiology Osteoblastogenesis Osteoblasts - drug effects Osteogenesis Osteogenesis - drug effects Pharmacology. Drug treatments Prostate cancer Prostatic Neoplasms - drug therapy Prostatic Neoplasms - secretion Pyrazoles - pharmacology Pyrazoles - therapeutic use Pyrimidines - pharmacology Pyrimidines - therapeutic use Recombinant Proteins - pharmacology secretome Subcutaneous Tissue Tumors Tumors of the urinary system Urinary tract. Prostate gland Xenograft Model Antitumor Assays Xenografts |
title | BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A17%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BMP4%20Promotes%20Prostate%20Tumor%20Growth%20in%20Bone%20through%20Osteogenesis&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=LEE,%20Yu-Chen&rft.date=2011-08-01&rft.volume=71&rft.issue=15&rft.spage=5194&rft.epage=5203&rft.pages=5194-5203&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.can-10-4374&rft_dat=%3Cproquest_pubme%3E1171891327%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1171891327&rft_id=info:pmid/21670081&rfr_iscdi=true |