BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis

Induction of new bone formation is frequently seen in the bone lesions from prostate cancer. However, whether osteogenesis is necessary for prostate tumor growth in bone is unknown. Recently, 2 xenografts, MDA-PCa-118b and MDA-PCa-133, were generated from prostate cancer bone metastases. When implan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2011-08, Vol.71 (15), p.5194-5203
Hauptverfasser: LEE, Yu-Chen, CHENG, Chien-Jui, BILEN, Mehmet A, LU, Jing-Fang, SATCHER, Robert L, YU-LEE, Li-Yuan, GALLICK, Gary E, MAITY, Sankar N, LIN, Sue-Hwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5203
container_issue 15
container_start_page 5194
container_title Cancer research (Chicago, Ill.)
container_volume 71
creator LEE, Yu-Chen
CHENG, Chien-Jui
BILEN, Mehmet A
LU, Jing-Fang
SATCHER, Robert L
YU-LEE, Li-Yuan
GALLICK, Gary E
MAITY, Sankar N
LIN, Sue-Hwa
description Induction of new bone formation is frequently seen in the bone lesions from prostate cancer. However, whether osteogenesis is necessary for prostate tumor growth in bone is unknown. Recently, 2 xenografts, MDA-PCa-118b and MDA-PCa-133, were generated from prostate cancer bone metastases. When implanted subcutaneously in severe combined immunodeficient (SCID) mice, MDA-PCa-118b induced strong ectopic bone formation while MDA-PCa-133 did not. To identify the factors that are involved in bone formation, we compared the expression of secreted factors (secretome) from MDA-PCa-118b and MDA-PCa-133 by cytokine array. We found that the osteogenic MDA-PCa-118b xenograft expressed higher levels of bone morphogenetic protein BMP4 and several cytokines including interleukin-8, growth-related protein (GRO), and CCL2. We showed that BMP4 secreted from MDA-PCa-118b contributed to about a third of the osteogenic differentiation seen in MDA-PCa-118b tumors. The conditioned media from MDA-PCa-118b induced a higher level of osteoblast differentiation, which was significantly reduced by treatment with BMP4 neutralizing antibody or the small molecule BMP receptor 1 inhibitor LDN-193189. BMP4 did not elicit an autocrine effect on MDA-PCa-118b, which expressed low to undetectable levels of BMP receptors. Treatment of SCID mice bearing MDA-PCa-118b tumors with LDN-193189 significantly reduced tumor growth. Thus, these studies support a role of BMP4-mediated osteogenesis in the progression of prostate cancer in bone.
doi_str_mv 10.1158/0008-5472.can-10-4374
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3148283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1171891327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-556403f69615f83b80117175dd4eb15fbd5617640770909d10cdc096232f4e143</originalsourceid><addsrcrecordid>eNp9kU1PxCAQhonR6PrxEzS9GL1UmQKFXozrxq_Er4OeCUvpbk1bFKjGfy-N66oXTwwzz7yZmRehXcBHAEwcY4xFyijPjrTqUsApJZyuoBEwIlJOKVtFoyWzgTa9f45fBpito40Mch5rMEKnZ7cPNHlwtrXB-CHwQQWTPPatdcmls-9hntRdcmY7k4S5s_1sntz7YOzMdMbXfhutVarxZmfxbqGni_PHyVV6c395PRnfpJoVEFLGcopJlRc5sEqQqcAAHDgrS2qmMTUtWQ48MpzjAhclYF1qXOQZySpqgJItdPKl-9JPW1Nq0wWnGvni6la5D2lVLf9WunouZ_ZNEqAiEyQKHCwEnH3tjQ-yrb02TaM6Y3svhcAc8oyySB7-Sw6TiwJIxiPKvlAdD-edqZYDAZaDT3LwQA4eyMn4bsgOPsW-vd_bLLu-jYnA_gJQXqumcqrTtf_hKMU0h4J8Au7smeE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1171891327</pqid></control><display><type>article</type><title>BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>LEE, Yu-Chen ; CHENG, Chien-Jui ; BILEN, Mehmet A ; LU, Jing-Fang ; SATCHER, Robert L ; YU-LEE, Li-Yuan ; GALLICK, Gary E ; MAITY, Sankar N ; LIN, Sue-Hwa</creator><creatorcontrib>LEE, Yu-Chen ; CHENG, Chien-Jui ; BILEN, Mehmet A ; LU, Jing-Fang ; SATCHER, Robert L ; YU-LEE, Li-Yuan ; GALLICK, Gary E ; MAITY, Sankar N ; LIN, Sue-Hwa</creatorcontrib><description>Induction of new bone formation is frequently seen in the bone lesions from prostate cancer. However, whether osteogenesis is necessary for prostate tumor growth in bone is unknown. Recently, 2 xenografts, MDA-PCa-118b and MDA-PCa-133, were generated from prostate cancer bone metastases. When implanted subcutaneously in severe combined immunodeficient (SCID) mice, MDA-PCa-118b induced strong ectopic bone formation while MDA-PCa-133 did not. To identify the factors that are involved in bone formation, we compared the expression of secreted factors (secretome) from MDA-PCa-118b and MDA-PCa-133 by cytokine array. We found that the osteogenic MDA-PCa-118b xenograft expressed higher levels of bone morphogenetic protein BMP4 and several cytokines including interleukin-8, growth-related protein (GRO), and CCL2. We showed that BMP4 secreted from MDA-PCa-118b contributed to about a third of the osteogenic differentiation seen in MDA-PCa-118b tumors. The conditioned media from MDA-PCa-118b induced a higher level of osteoblast differentiation, which was significantly reduced by treatment with BMP4 neutralizing antibody or the small molecule BMP receptor 1 inhibitor LDN-193189. BMP4 did not elicit an autocrine effect on MDA-PCa-118b, which expressed low to undetectable levels of BMP receptors. Treatment of SCID mice bearing MDA-PCa-118b tumors with LDN-193189 significantly reduced tumor growth. Thus, these studies support a role of BMP4-mediated osteogenesis in the progression of prostate cancer in bone.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-10-4374</identifier><identifier>PMID: 21670081</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Adenocarcinoma - drug therapy ; Adenocarcinoma - secondary ; Adenocarcinoma - secretion ; Animals ; Antibodies ; Antineoplastic agents ; Autocrine Communication ; Autocrine signalling ; Biological and medical sciences ; Bone cancer ; Bone growth ; Bone morphogenetic protein 4 ; Bone Morphogenetic Protein 4 - antagonists &amp; inhibitors ; Bone Morphogenetic Protein 4 - physiology ; Bone Morphogenetic Protein 4 - secretion ; Bone Morphogenetic Protein Receptors, Type I - antagonists &amp; inhibitors ; Bone Morphogenetic Protein Receptors, Type I - biosynthesis ; Bone morphogenetic proteins ; Bone Neoplasms - drug therapy ; Bone Neoplasms - physiopathology ; Bone Neoplasms - secondary ; Bone tumors ; Cell Line, Tumor - drug effects ; Cell Line, Tumor - secretion ; Cell Line, Tumor - transplantation ; Culture Media, Conditioned - pharmacology ; Cytokines - pharmacology ; Cytokines - secretion ; Gynecology. Andrology. Obstetrics ; Humans ; Immunodeficiency ; Intercellular Signaling Peptides and Proteins - pharmacology ; Intercellular Signaling Peptides and Proteins - secretion ; Interleukin 8 ; Male ; Male genital diseases ; Medical sciences ; Metastases ; Mice ; Mice, SCID ; Monocyte chemoattractant protein 1 ; Neoplasm Proteins - physiology ; Neoplasm Proteins - secretion ; Nephrology. Urinary tract diseases ; Ossification (ectopic) ; Ossification, Heterotopic - etiology ; Osteoblastogenesis ; Osteoblasts - drug effects ; Osteogenesis ; Osteogenesis - drug effects ; Pharmacology. Drug treatments ; Prostate cancer ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - secretion ; Pyrazoles - pharmacology ; Pyrazoles - therapeutic use ; Pyrimidines - pharmacology ; Pyrimidines - therapeutic use ; Recombinant Proteins - pharmacology ; secretome ; Subcutaneous Tissue ; Tumors ; Tumors of the urinary system ; Urinary tract. Prostate gland ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Cancer research (Chicago, Ill.), 2011-08, Vol.71 (15), p.5194-5203</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-556403f69615f83b80117175dd4eb15fbd5617640770909d10cdc096232f4e143</citedby><cites>FETCH-LOGICAL-c591t-556403f69615f83b80117175dd4eb15fbd5617640770909d10cdc096232f4e143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24404619$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21670081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LEE, Yu-Chen</creatorcontrib><creatorcontrib>CHENG, Chien-Jui</creatorcontrib><creatorcontrib>BILEN, Mehmet A</creatorcontrib><creatorcontrib>LU, Jing-Fang</creatorcontrib><creatorcontrib>SATCHER, Robert L</creatorcontrib><creatorcontrib>YU-LEE, Li-Yuan</creatorcontrib><creatorcontrib>GALLICK, Gary E</creatorcontrib><creatorcontrib>MAITY, Sankar N</creatorcontrib><creatorcontrib>LIN, Sue-Hwa</creatorcontrib><title>BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Induction of new bone formation is frequently seen in the bone lesions from prostate cancer. However, whether osteogenesis is necessary for prostate tumor growth in bone is unknown. Recently, 2 xenografts, MDA-PCa-118b and MDA-PCa-133, were generated from prostate cancer bone metastases. When implanted subcutaneously in severe combined immunodeficient (SCID) mice, MDA-PCa-118b induced strong ectopic bone formation while MDA-PCa-133 did not. To identify the factors that are involved in bone formation, we compared the expression of secreted factors (secretome) from MDA-PCa-118b and MDA-PCa-133 by cytokine array. We found that the osteogenic MDA-PCa-118b xenograft expressed higher levels of bone morphogenetic protein BMP4 and several cytokines including interleukin-8, growth-related protein (GRO), and CCL2. We showed that BMP4 secreted from MDA-PCa-118b contributed to about a third of the osteogenic differentiation seen in MDA-PCa-118b tumors. The conditioned media from MDA-PCa-118b induced a higher level of osteoblast differentiation, which was significantly reduced by treatment with BMP4 neutralizing antibody or the small molecule BMP receptor 1 inhibitor LDN-193189. BMP4 did not elicit an autocrine effect on MDA-PCa-118b, which expressed low to undetectable levels of BMP receptors. Treatment of SCID mice bearing MDA-PCa-118b tumors with LDN-193189 significantly reduced tumor growth. Thus, these studies support a role of BMP4-mediated osteogenesis in the progression of prostate cancer in bone.</description><subject>Adenocarcinoma - drug therapy</subject><subject>Adenocarcinoma - secondary</subject><subject>Adenocarcinoma - secretion</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antineoplastic agents</subject><subject>Autocrine Communication</subject><subject>Autocrine signalling</subject><subject>Biological and medical sciences</subject><subject>Bone cancer</subject><subject>Bone growth</subject><subject>Bone morphogenetic protein 4</subject><subject>Bone Morphogenetic Protein 4 - antagonists &amp; inhibitors</subject><subject>Bone Morphogenetic Protein 4 - physiology</subject><subject>Bone Morphogenetic Protein 4 - secretion</subject><subject>Bone Morphogenetic Protein Receptors, Type I - antagonists &amp; inhibitors</subject><subject>Bone Morphogenetic Protein Receptors, Type I - biosynthesis</subject><subject>Bone morphogenetic proteins</subject><subject>Bone Neoplasms - drug therapy</subject><subject>Bone Neoplasms - physiopathology</subject><subject>Bone Neoplasms - secondary</subject><subject>Bone tumors</subject><subject>Cell Line, Tumor - drug effects</subject><subject>Cell Line, Tumor - secretion</subject><subject>Cell Line, Tumor - transplantation</subject><subject>Culture Media, Conditioned - pharmacology</subject><subject>Cytokines - pharmacology</subject><subject>Cytokines - secretion</subject><subject>Gynecology. Andrology. Obstetrics</subject><subject>Humans</subject><subject>Immunodeficiency</subject><subject>Intercellular Signaling Peptides and Proteins - pharmacology</subject><subject>Intercellular Signaling Peptides and Proteins - secretion</subject><subject>Interleukin 8</subject><subject>Male</subject><subject>Male genital diseases</subject><subject>Medical sciences</subject><subject>Metastases</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Neoplasm Proteins - physiology</subject><subject>Neoplasm Proteins - secretion</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Ossification (ectopic)</subject><subject>Ossification, Heterotopic - etiology</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts - drug effects</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Pharmacology. Drug treatments</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - secretion</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrazoles - therapeutic use</subject><subject>Pyrimidines - pharmacology</subject><subject>Pyrimidines - therapeutic use</subject><subject>Recombinant Proteins - pharmacology</subject><subject>secretome</subject><subject>Subcutaneous Tissue</subject><subject>Tumors</subject><subject>Tumors of the urinary system</subject><subject>Urinary tract. Prostate gland</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1PxCAQhonR6PrxEzS9GL1UmQKFXozrxq_Er4OeCUvpbk1bFKjGfy-N66oXTwwzz7yZmRehXcBHAEwcY4xFyijPjrTqUsApJZyuoBEwIlJOKVtFoyWzgTa9f45fBpito40Mch5rMEKnZ7cPNHlwtrXB-CHwQQWTPPatdcmls-9hntRdcmY7k4S5s_1sntz7YOzMdMbXfhutVarxZmfxbqGni_PHyVV6c395PRnfpJoVEFLGcopJlRc5sEqQqcAAHDgrS2qmMTUtWQ48MpzjAhclYF1qXOQZySpqgJItdPKl-9JPW1Nq0wWnGvni6la5D2lVLf9WunouZ_ZNEqAiEyQKHCwEnH3tjQ-yrb02TaM6Y3svhcAc8oyySB7-Sw6TiwJIxiPKvlAdD-edqZYDAZaDT3LwQA4eyMn4bsgOPsW-vd_bLLu-jYnA_gJQXqumcqrTtf_hKMU0h4J8Au7smeE</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>LEE, Yu-Chen</creator><creator>CHENG, Chien-Jui</creator><creator>BILEN, Mehmet A</creator><creator>LU, Jing-Fang</creator><creator>SATCHER, Robert L</creator><creator>YU-LEE, Li-Yuan</creator><creator>GALLICK, Gary E</creator><creator>MAITY, Sankar N</creator><creator>LIN, Sue-Hwa</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110801</creationdate><title>BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis</title><author>LEE, Yu-Chen ; CHENG, Chien-Jui ; BILEN, Mehmet A ; LU, Jing-Fang ; SATCHER, Robert L ; YU-LEE, Li-Yuan ; GALLICK, Gary E ; MAITY, Sankar N ; LIN, Sue-Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-556403f69615f83b80117175dd4eb15fbd5617640770909d10cdc096232f4e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenocarcinoma - drug therapy</topic><topic>Adenocarcinoma - secondary</topic><topic>Adenocarcinoma - secretion</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antineoplastic agents</topic><topic>Autocrine Communication</topic><topic>Autocrine signalling</topic><topic>Biological and medical sciences</topic><topic>Bone cancer</topic><topic>Bone growth</topic><topic>Bone morphogenetic protein 4</topic><topic>Bone Morphogenetic Protein 4 - antagonists &amp; inhibitors</topic><topic>Bone Morphogenetic Protein 4 - physiology</topic><topic>Bone Morphogenetic Protein 4 - secretion</topic><topic>Bone Morphogenetic Protein Receptors, Type I - antagonists &amp; inhibitors</topic><topic>Bone Morphogenetic Protein Receptors, Type I - biosynthesis</topic><topic>Bone morphogenetic proteins</topic><topic>Bone Neoplasms - drug therapy</topic><topic>Bone Neoplasms - physiopathology</topic><topic>Bone Neoplasms - secondary</topic><topic>Bone tumors</topic><topic>Cell Line, Tumor - drug effects</topic><topic>Cell Line, Tumor - secretion</topic><topic>Cell Line, Tumor - transplantation</topic><topic>Culture Media, Conditioned - pharmacology</topic><topic>Cytokines - pharmacology</topic><topic>Cytokines - secretion</topic><topic>Gynecology. Andrology. Obstetrics</topic><topic>Humans</topic><topic>Immunodeficiency</topic><topic>Intercellular Signaling Peptides and Proteins - pharmacology</topic><topic>Intercellular Signaling Peptides and Proteins - secretion</topic><topic>Interleukin 8</topic><topic>Male</topic><topic>Male genital diseases</topic><topic>Medical sciences</topic><topic>Metastases</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Neoplasm Proteins - physiology</topic><topic>Neoplasm Proteins - secretion</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Ossification (ectopic)</topic><topic>Ossification, Heterotopic - etiology</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts - drug effects</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Pharmacology. Drug treatments</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - secretion</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrazoles - therapeutic use</topic><topic>Pyrimidines - pharmacology</topic><topic>Pyrimidines - therapeutic use</topic><topic>Recombinant Proteins - pharmacology</topic><topic>secretome</topic><topic>Subcutaneous Tissue</topic><topic>Tumors</topic><topic>Tumors of the urinary system</topic><topic>Urinary tract. Prostate gland</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEE, Yu-Chen</creatorcontrib><creatorcontrib>CHENG, Chien-Jui</creatorcontrib><creatorcontrib>BILEN, Mehmet A</creatorcontrib><creatorcontrib>LU, Jing-Fang</creatorcontrib><creatorcontrib>SATCHER, Robert L</creatorcontrib><creatorcontrib>YU-LEE, Li-Yuan</creatorcontrib><creatorcontrib>GALLICK, Gary E</creatorcontrib><creatorcontrib>MAITY, Sankar N</creatorcontrib><creatorcontrib>LIN, Sue-Hwa</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEE, Yu-Chen</au><au>CHENG, Chien-Jui</au><au>BILEN, Mehmet A</au><au>LU, Jing-Fang</au><au>SATCHER, Robert L</au><au>YU-LEE, Li-Yuan</au><au>GALLICK, Gary E</au><au>MAITY, Sankar N</au><au>LIN, Sue-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>71</volume><issue>15</issue><spage>5194</spage><epage>5203</epage><pages>5194-5203</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>Induction of new bone formation is frequently seen in the bone lesions from prostate cancer. However, whether osteogenesis is necessary for prostate tumor growth in bone is unknown. Recently, 2 xenografts, MDA-PCa-118b and MDA-PCa-133, were generated from prostate cancer bone metastases. When implanted subcutaneously in severe combined immunodeficient (SCID) mice, MDA-PCa-118b induced strong ectopic bone formation while MDA-PCa-133 did not. To identify the factors that are involved in bone formation, we compared the expression of secreted factors (secretome) from MDA-PCa-118b and MDA-PCa-133 by cytokine array. We found that the osteogenic MDA-PCa-118b xenograft expressed higher levels of bone morphogenetic protein BMP4 and several cytokines including interleukin-8, growth-related protein (GRO), and CCL2. We showed that BMP4 secreted from MDA-PCa-118b contributed to about a third of the osteogenic differentiation seen in MDA-PCa-118b tumors. The conditioned media from MDA-PCa-118b induced a higher level of osteoblast differentiation, which was significantly reduced by treatment with BMP4 neutralizing antibody or the small molecule BMP receptor 1 inhibitor LDN-193189. BMP4 did not elicit an autocrine effect on MDA-PCa-118b, which expressed low to undetectable levels of BMP receptors. Treatment of SCID mice bearing MDA-PCa-118b tumors with LDN-193189 significantly reduced tumor growth. Thus, these studies support a role of BMP4-mediated osteogenesis in the progression of prostate cancer in bone.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>21670081</pmid><doi>10.1158/0008-5472.can-10-4374</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2011-08, Vol.71 (15), p.5194-5203
issn 0008-5472
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3148283
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenocarcinoma - drug therapy
Adenocarcinoma - secondary
Adenocarcinoma - secretion
Animals
Antibodies
Antineoplastic agents
Autocrine Communication
Autocrine signalling
Biological and medical sciences
Bone cancer
Bone growth
Bone morphogenetic protein 4
Bone Morphogenetic Protein 4 - antagonists & inhibitors
Bone Morphogenetic Protein 4 - physiology
Bone Morphogenetic Protein 4 - secretion
Bone Morphogenetic Protein Receptors, Type I - antagonists & inhibitors
Bone Morphogenetic Protein Receptors, Type I - biosynthesis
Bone morphogenetic proteins
Bone Neoplasms - drug therapy
Bone Neoplasms - physiopathology
Bone Neoplasms - secondary
Bone tumors
Cell Line, Tumor - drug effects
Cell Line, Tumor - secretion
Cell Line, Tumor - transplantation
Culture Media, Conditioned - pharmacology
Cytokines - pharmacology
Cytokines - secretion
Gynecology. Andrology. Obstetrics
Humans
Immunodeficiency
Intercellular Signaling Peptides and Proteins - pharmacology
Intercellular Signaling Peptides and Proteins - secretion
Interleukin 8
Male
Male genital diseases
Medical sciences
Metastases
Mice
Mice, SCID
Monocyte chemoattractant protein 1
Neoplasm Proteins - physiology
Neoplasm Proteins - secretion
Nephrology. Urinary tract diseases
Ossification (ectopic)
Ossification, Heterotopic - etiology
Osteoblastogenesis
Osteoblasts - drug effects
Osteogenesis
Osteogenesis - drug effects
Pharmacology. Drug treatments
Prostate cancer
Prostatic Neoplasms - drug therapy
Prostatic Neoplasms - secretion
Pyrazoles - pharmacology
Pyrazoles - therapeutic use
Pyrimidines - pharmacology
Pyrimidines - therapeutic use
Recombinant Proteins - pharmacology
secretome
Subcutaneous Tissue
Tumors
Tumors of the urinary system
Urinary tract. Prostate gland
Xenograft Model Antitumor Assays
Xenografts
title BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A17%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BMP4%20Promotes%20Prostate%20Tumor%20Growth%20in%20Bone%20through%20Osteogenesis&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=LEE,%20Yu-Chen&rft.date=2011-08-01&rft.volume=71&rft.issue=15&rft.spage=5194&rft.epage=5203&rft.pages=5194-5203&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.can-10-4374&rft_dat=%3Cproquest_pubme%3E1171891327%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1171891327&rft_id=info:pmid/21670081&rfr_iscdi=true