Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23

Lactobacillus reuteri strain 100-23 together with a Lactobacillus -free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2011-07, Vol.5 (7), p.1115-1124
Hauptverfasser: Sims, Ian M, Frese, Steven A, Walter, Jens, Loach, Diane, Wilson, Michelle, Appleyard, Kay, Eason, Jocelyn, Livingston, Megan, Baird, Margaret, Cook, Gregory, Tannock, Gerald W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1124
container_issue 7
container_start_page 1115
container_title The ISME Journal
container_volume 5
creator Sims, Ian M
Frese, Steven A
Walter, Jens
Loach, Diane
Wilson, Michelle
Appleyard, Kay
Eason, Jocelyn
Livingston, Megan
Baird, Margaret
Cook, Gregory
Tannock, Gerald W
description Lactobacillus reuteri strain 100-23 together with a Lactobacillus -free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical analysis showed that this exopolysaccharide was a levan (β-2, 6-linked fructan). Mutation of the fructosyl transferase ( ftf ) gene resulted in loss of exopolysaccharide production. The ftf mutant was able to colonise the murine gastrointestinal tract in the absence of competition, but colonisation was impaired in competition with the wild type. Biofilm formation by the mutant on the forestomach epithelial surface was not impaired and the matrix between cells was indistinguishable from that of the wild type in electron micrographs. Colonisation of the mouse gut by the wild-type strain led to increased proportions of regulatory T cells (Foxp3+) in the spleen, whereas colonisation by the ftf mutant did not. Survival of the mutant in sucrose-containing medium was markedly reduced relative to the wild type. Comparison of the genomic ftf loci of strain 100-23 with other L. reuteri strains suggested that the ftf gene was acquired by lateral gene transfer early in the evolution of the species and subsequently diversified at accelerated rates. Levan production by L. reuteri 100-23 may represent a function acquired by the bacterial species for life in moderate to high-sucrose extra-gastrointestinal environments that has subsequently been diverted to novel uses, including immunomodulation, that aid in colonisation of the murine gut.
doi_str_mv 10.1038/ismej.2010.201
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3146279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379524401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-ac8b5e87044c5166d92dbfebcef56b09d37595ed14df7489410b094e95ba708b3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi1ERUvhyhFZXDhlayd27FyQUMWXtFIPwNnyx2TrVWIvdlyx_x4vWxao1MvYnnn8zoxehF5RsqKkk1c-z7BdtaS-a3iCLqjgtBGdIE9P9749R89z3hLCRd-LZ-i8pS2TkssLZL8uqdilJMA6ODyWYBcfQ8ZxxPAz7uK0z9raW528A7xL0RULDps93pQF2zjPELKe8FrbJRpt_TSVjBOUBZLHlJCm7V6gs1FPGV7en5fo-8cP364_N-ubT1-u368bW4dZGm2l4SAFYcxy2vduaJ0ZwVgYeW_I4DrBBw6OMjcKJgdGSc0yGLjRgkjTXaJ3R91dMTM4C2FJelK75Ged9ipqr_6vBH-rNvFOdZT1rRiqwNt7gRR_FMiLmn22ME06QCxZDUTQnksmK_nmAbmNJYW6nZKiSgk68AqtjpBNMecE42kUStTBPfXbPXVw7xDqh9f_LnDC_9hVgasjkGspbCD9bfuI5C8jdagU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872797195</pqid></control><display><type>article</type><title>Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>Oxford Academic Journals (Open Access)</source><creator>Sims, Ian M ; Frese, Steven A ; Walter, Jens ; Loach, Diane ; Wilson, Michelle ; Appleyard, Kay ; Eason, Jocelyn ; Livingston, Megan ; Baird, Margaret ; Cook, Gregory ; Tannock, Gerald W</creator><creatorcontrib>Sims, Ian M ; Frese, Steven A ; Walter, Jens ; Loach, Diane ; Wilson, Michelle ; Appleyard, Kay ; Eason, Jocelyn ; Livingston, Megan ; Baird, Margaret ; Cook, Gregory ; Tannock, Gerald W</creatorcontrib><description>Lactobacillus reuteri strain 100-23 together with a Lactobacillus -free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical analysis showed that this exopolysaccharide was a levan (β-2, 6-linked fructan). Mutation of the fructosyl transferase ( ftf ) gene resulted in loss of exopolysaccharide production. The ftf mutant was able to colonise the murine gastrointestinal tract in the absence of competition, but colonisation was impaired in competition with the wild type. Biofilm formation by the mutant on the forestomach epithelial surface was not impaired and the matrix between cells was indistinguishable from that of the wild type in electron micrographs. Colonisation of the mouse gut by the wild-type strain led to increased proportions of regulatory T cells (Foxp3+) in the spleen, whereas colonisation by the ftf mutant did not. Survival of the mutant in sucrose-containing medium was markedly reduced relative to the wild type. Comparison of the genomic ftf loci of strain 100-23 with other L. reuteri strains suggested that the ftf gene was acquired by lateral gene transfer early in the evolution of the species and subsequently diversified at accelerated rates. Levan production by L. reuteri 100-23 may represent a function acquired by the bacterial species for life in moderate to high-sucrose extra-gastrointestinal environments that has subsequently been diverted to novel uses, including immunomodulation, that aid in colonisation of the murine gut.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2010.201</identifier><identifier>PMID: 21248858</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/2152/569 ; 631/326/2565/855 ; 631/45/72/1205 ; 692/698/2741/2135 ; Animals ; Biofilms ; Biomedical and Life Sciences ; Chemical analysis ; Colonization ; Commensalism ; Competition ; Culture Media ; Ecology ; Evolutionary Biology ; Fructans - biosynthesis ; Fructans - chemistry ; Gastrointestinal Contents - microbiology ; Gastrointestinal tract ; Genes, Bacterial ; Hexosyltransferases - genetics ; Lactobacillus reuteri ; Lactobacillus reuteri - genetics ; Lactobacillus reuteri - growth &amp; development ; Lactobacillus reuteri - metabolism ; Life Sciences ; Mice ; Mice, Inbred BALB C ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Mutagenesis, Insertional ; Mutants ; Mutation ; Original ; original-article ; Polysaccharides, Bacterial - biosynthesis ; Polysaccharides, Bacterial - chemistry ; Spleen - cytology ; Spleen - immunology ; Stomach - microbiology ; Sucrose - metabolism ; T-Lymphocytes, Regulatory - microbiology ; Vertebrates</subject><ispartof>The ISME Journal, 2011-07, Vol.5 (7), p.1115-1124</ispartof><rights>International Society for Microbial Ecology 2011</rights><rights>Copyright Nature Publishing Group Jul 2011</rights><rights>Copyright © 2011 International Society for Microbial Ecology 2011 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-ac8b5e87044c5166d92dbfebcef56b09d37595ed14df7489410b094e95ba708b3</citedby><cites>FETCH-LOGICAL-c488t-ac8b5e87044c5166d92dbfebcef56b09d37595ed14df7489410b094e95ba708b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146279/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146279/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21248858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sims, Ian M</creatorcontrib><creatorcontrib>Frese, Steven A</creatorcontrib><creatorcontrib>Walter, Jens</creatorcontrib><creatorcontrib>Loach, Diane</creatorcontrib><creatorcontrib>Wilson, Michelle</creatorcontrib><creatorcontrib>Appleyard, Kay</creatorcontrib><creatorcontrib>Eason, Jocelyn</creatorcontrib><creatorcontrib>Livingston, Megan</creatorcontrib><creatorcontrib>Baird, Margaret</creatorcontrib><creatorcontrib>Cook, Gregory</creatorcontrib><creatorcontrib>Tannock, Gerald W</creatorcontrib><title>Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Lactobacillus reuteri strain 100-23 together with a Lactobacillus -free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical analysis showed that this exopolysaccharide was a levan (β-2, 6-linked fructan). Mutation of the fructosyl transferase ( ftf ) gene resulted in loss of exopolysaccharide production. The ftf mutant was able to colonise the murine gastrointestinal tract in the absence of competition, but colonisation was impaired in competition with the wild type. Biofilm formation by the mutant on the forestomach epithelial surface was not impaired and the matrix between cells was indistinguishable from that of the wild type in electron micrographs. Colonisation of the mouse gut by the wild-type strain led to increased proportions of regulatory T cells (Foxp3+) in the spleen, whereas colonisation by the ftf mutant did not. Survival of the mutant in sucrose-containing medium was markedly reduced relative to the wild type. Comparison of the genomic ftf loci of strain 100-23 with other L. reuteri strains suggested that the ftf gene was acquired by lateral gene transfer early in the evolution of the species and subsequently diversified at accelerated rates. Levan production by L. reuteri 100-23 may represent a function acquired by the bacterial species for life in moderate to high-sucrose extra-gastrointestinal environments that has subsequently been diverted to novel uses, including immunomodulation, that aid in colonisation of the murine gut.</description><subject>631/250/2152/569</subject><subject>631/326/2565/855</subject><subject>631/45/72/1205</subject><subject>692/698/2741/2135</subject><subject>Animals</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Chemical analysis</subject><subject>Colonization</subject><subject>Commensalism</subject><subject>Competition</subject><subject>Culture Media</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Fructans - biosynthesis</subject><subject>Fructans - chemistry</subject><subject>Gastrointestinal Contents - microbiology</subject><subject>Gastrointestinal tract</subject><subject>Genes, Bacterial</subject><subject>Hexosyltransferases - genetics</subject><subject>Lactobacillus reuteri</subject><subject>Lactobacillus reuteri - genetics</subject><subject>Lactobacillus reuteri - growth &amp; development</subject><subject>Lactobacillus reuteri - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mutagenesis, Insertional</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Original</subject><subject>original-article</subject><subject>Polysaccharides, Bacterial - biosynthesis</subject><subject>Polysaccharides, Bacterial - chemistry</subject><subject>Spleen - cytology</subject><subject>Spleen - immunology</subject><subject>Stomach - microbiology</subject><subject>Sucrose - metabolism</subject><subject>T-Lymphocytes, Regulatory - microbiology</subject><subject>Vertebrates</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1v1DAQhi1ERUvhyhFZXDhlayd27FyQUMWXtFIPwNnyx2TrVWIvdlyx_x4vWxao1MvYnnn8zoxehF5RsqKkk1c-z7BdtaS-a3iCLqjgtBGdIE9P9749R89z3hLCRd-LZ-i8pS2TkssLZL8uqdilJMA6ODyWYBcfQ8ZxxPAz7uK0z9raW528A7xL0RULDps93pQF2zjPELKe8FrbJRpt_TSVjBOUBZLHlJCm7V6gs1FPGV7en5fo-8cP364_N-ubT1-u368bW4dZGm2l4SAFYcxy2vduaJ0ZwVgYeW_I4DrBBw6OMjcKJgdGSc0yGLjRgkjTXaJ3R91dMTM4C2FJelK75Ged9ipqr_6vBH-rNvFOdZT1rRiqwNt7gRR_FMiLmn22ME06QCxZDUTQnksmK_nmAbmNJYW6nZKiSgk68AqtjpBNMecE42kUStTBPfXbPXVw7xDqh9f_LnDC_9hVgasjkGspbCD9bfuI5C8jdagU</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Sims, Ian M</creator><creator>Frese, Steven A</creator><creator>Walter, Jens</creator><creator>Loach, Diane</creator><creator>Wilson, Michelle</creator><creator>Appleyard, Kay</creator><creator>Eason, Jocelyn</creator><creator>Livingston, Megan</creator><creator>Baird, Margaret</creator><creator>Cook, Gregory</creator><creator>Tannock, Gerald W</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20110701</creationdate><title>Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23</title><author>Sims, Ian M ; Frese, Steven A ; Walter, Jens ; Loach, Diane ; Wilson, Michelle ; Appleyard, Kay ; Eason, Jocelyn ; Livingston, Megan ; Baird, Margaret ; Cook, Gregory ; Tannock, Gerald W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-ac8b5e87044c5166d92dbfebcef56b09d37595ed14df7489410b094e95ba708b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/250/2152/569</topic><topic>631/326/2565/855</topic><topic>631/45/72/1205</topic><topic>692/698/2741/2135</topic><topic>Animals</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Chemical analysis</topic><topic>Colonization</topic><topic>Commensalism</topic><topic>Competition</topic><topic>Culture Media</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Fructans - biosynthesis</topic><topic>Fructans - chemistry</topic><topic>Gastrointestinal Contents - microbiology</topic><topic>Gastrointestinal tract</topic><topic>Genes, Bacterial</topic><topic>Hexosyltransferases - genetics</topic><topic>Lactobacillus reuteri</topic><topic>Lactobacillus reuteri - genetics</topic><topic>Lactobacillus reuteri - growth &amp; development</topic><topic>Lactobacillus reuteri - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mutagenesis, Insertional</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Original</topic><topic>original-article</topic><topic>Polysaccharides, Bacterial - biosynthesis</topic><topic>Polysaccharides, Bacterial - chemistry</topic><topic>Spleen - cytology</topic><topic>Spleen - immunology</topic><topic>Stomach - microbiology</topic><topic>Sucrose - metabolism</topic><topic>T-Lymphocytes, Regulatory - microbiology</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sims, Ian M</creatorcontrib><creatorcontrib>Frese, Steven A</creatorcontrib><creatorcontrib>Walter, Jens</creatorcontrib><creatorcontrib>Loach, Diane</creatorcontrib><creatorcontrib>Wilson, Michelle</creatorcontrib><creatorcontrib>Appleyard, Kay</creatorcontrib><creatorcontrib>Eason, Jocelyn</creatorcontrib><creatorcontrib>Livingston, Megan</creatorcontrib><creatorcontrib>Baird, Margaret</creatorcontrib><creatorcontrib>Cook, Gregory</creatorcontrib><creatorcontrib>Tannock, Gerald W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sims, Ian M</au><au>Frese, Steven A</au><au>Walter, Jens</au><au>Loach, Diane</au><au>Wilson, Michelle</au><au>Appleyard, Kay</au><au>Eason, Jocelyn</au><au>Livingston, Megan</au><au>Baird, Margaret</au><au>Cook, Gregory</au><au>Tannock, Gerald W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>5</volume><issue>7</issue><spage>1115</spage><epage>1124</epage><pages>1115-1124</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Lactobacillus reuteri strain 100-23 together with a Lactobacillus -free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical analysis showed that this exopolysaccharide was a levan (β-2, 6-linked fructan). Mutation of the fructosyl transferase ( ftf ) gene resulted in loss of exopolysaccharide production. The ftf mutant was able to colonise the murine gastrointestinal tract in the absence of competition, but colonisation was impaired in competition with the wild type. Biofilm formation by the mutant on the forestomach epithelial surface was not impaired and the matrix between cells was indistinguishable from that of the wild type in electron micrographs. Colonisation of the mouse gut by the wild-type strain led to increased proportions of regulatory T cells (Foxp3+) in the spleen, whereas colonisation by the ftf mutant did not. Survival of the mutant in sucrose-containing medium was markedly reduced relative to the wild type. Comparison of the genomic ftf loci of strain 100-23 with other L. reuteri strains suggested that the ftf gene was acquired by lateral gene transfer early in the evolution of the species and subsequently diversified at accelerated rates. Levan production by L. reuteri 100-23 may represent a function acquired by the bacterial species for life in moderate to high-sucrose extra-gastrointestinal environments that has subsequently been diverted to novel uses, including immunomodulation, that aid in colonisation of the murine gut.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21248858</pmid><doi>10.1038/ismej.2010.201</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2011-07, Vol.5 (7), p.1115-1124
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3146279
source MEDLINE; PubMed Central; EZB Electronic Journals Library; Oxford Academic Journals (Open Access)
subjects 631/250/2152/569
631/326/2565/855
631/45/72/1205
692/698/2741/2135
Animals
Biofilms
Biomedical and Life Sciences
Chemical analysis
Colonization
Commensalism
Competition
Culture Media
Ecology
Evolutionary Biology
Fructans - biosynthesis
Fructans - chemistry
Gastrointestinal Contents - microbiology
Gastrointestinal tract
Genes, Bacterial
Hexosyltransferases - genetics
Lactobacillus reuteri
Lactobacillus reuteri - genetics
Lactobacillus reuteri - growth & development
Lactobacillus reuteri - metabolism
Life Sciences
Mice
Mice, Inbred BALB C
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Mutagenesis, Insertional
Mutants
Mutation
Original
original-article
Polysaccharides, Bacterial - biosynthesis
Polysaccharides, Bacterial - chemistry
Spleen - cytology
Spleen - immunology
Stomach - microbiology
Sucrose - metabolism
T-Lymphocytes, Regulatory - microbiology
Vertebrates
title Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20functions%20of%20exopolysaccharide%20produced%20by%20gut%20commensal%20Lactobacillus%20reuteri%20100-23&rft.jtitle=The%20ISME%20Journal&rft.au=Sims,%20Ian%20M&rft.date=2011-07-01&rft.volume=5&rft.issue=7&rft.spage=1115&rft.epage=1124&rft.pages=1115-1124&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2010.201&rft_dat=%3Cproquest_pubme%3E2379524401%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872797195&rft_id=info:pmid/21248858&rfr_iscdi=true