A microdosing approach for characterizing formation and repair of carboplatin–DNA monoadducts and chemoresistance

Formation and repair of platinum (Pt)‐induced DNA adducts is a critical step in Pt drug‐mediated cytotoxicity. Measurement of Pt–DNA adduct kinetics in tumors may be useful for better understanding chemoresistance and therapeutic response. However, this concept has yet to be rigorously tested becaus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2011-09, Vol.129 (6), p.1425-1434
Hauptverfasser: Henderson, Paul T., Li, Tao, He, Miaoling, Zhang, Hongyong, Malfatti, Michael, Gandara, David, Grimminger, Peter P., Danenberg, Kathleen D., Beckett, Laurel, de Vere White, Ralph W., Turteltaub, Kenneth W., Pan, Chong‐Xian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1434
container_issue 6
container_start_page 1425
container_title International journal of cancer
container_volume 129
creator Henderson, Paul T.
Li, Tao
He, Miaoling
Zhang, Hongyong
Malfatti, Michael
Gandara, David
Grimminger, Peter P.
Danenberg, Kathleen D.
Beckett, Laurel
de Vere White, Ralph W.
Turteltaub, Kenneth W.
Pan, Chong‐Xian
description Formation and repair of platinum (Pt)‐induced DNA adducts is a critical step in Pt drug‐mediated cytotoxicity. Measurement of Pt–DNA adduct kinetics in tumors may be useful for better understanding chemoresistance and therapeutic response. However, this concept has yet to be rigorously tested because of technical challenges in measuring the adducts at low concentrations and consistent access to sufficient tumor biopsy material. Ultrasensitive accelerator mass spectrometry was used to detect [14C]carboplatin–DNA monoadducts at the attomole level, which are the precursors to Pt–DNA crosslink formation, in six cancer cell lines as a proof‐of‐concept. The most resistant cells had the lowest monoadduct levels at all time points over 24 hr. [14C]Carboplatin “microdoses” (1/100th the pharmacologically effective concentration) had nearly identical adduct formation and repair kinetics compared to therapeutically relevant doses, suggesting that the microdosing approach can potentially be used to determine the pharmacological effects of therapeutic treatment. Some of the possible chemoresistance mechanisms were also studied, such as drug uptake/efflux, intracellular inactivation and DNA repair in selected cell lines. Intracellular inactivation and efficient DNA repair each contributed significantly to the suppression of DNA monoadduct formation in the most resistant cell line compared to the most sensitive cell line studied (p < 0.001). Nucleotide excision repair (NER)‐deficient and ‐proficient cells showed substantial differences in carboplatin monoadduct concentrations over 24 hr that likely contributed to chemoresistance. The data support the utility of carboplatin microdosing as a translatable approach for defining carboplatin–DNA monoadduct formation and repair, possibly by NER, which may be useful for characterizing chemoresistance in vivo.
doi_str_mv 10.1002/ijc.25814
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3145006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020841419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5434-f64a54f0d2e6308e67c119d6a112b3747ee50163c877b4e7fdf825b1b0af1c213</originalsourceid><addsrcrecordid>eNp1kcFu1DAURS0EokNhwQ-gbJBgkdbPsZPMBqmaQimqYANr68V57rhK7GBnqNpV_4E_5EvqdoYCC1aWfI_ufbqXsZfAD4BzceguzIFQLchHbAF82ZRcgHrMFlnjZQNVvceepXTBOYDi8inbEwCiFaJasHRUjM7E0Ifk_HmB0xQDmnVhQyzMGiOamaK7vtPy14izC75A3xeRJnSxCLYwGLswDVnyv25-Hn_OjsEH7PuNmdM9a9Y0hkjJpRm9oefsicUh0Yvdu8--fXj_dfWxPPtycro6OiuNkpUsbS1RSct7QXXFW6obA7Dsa8zHd1UjGyLFoa5M2zSdpMb2thWqg46jBSOg2mfvtr7TphupN-TniIOeohsxXumATv-reLfW5-GHrkAqzuts8GZnEMP3DaVZjy4ZGgb0FDZJQ-63lSBhmdG3WzR3mVIk-xADXN-NpPNI-n6kzL76-64H8vcqGXi9AzAZHGzMrbn0h5NSLbNl5g633KUb6Or_ifr002obfQtivave</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020841419</pqid></control><display><type>article</type><title>A microdosing approach for characterizing formation and repair of carboplatin–DNA monoadducts and chemoresistance</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Henderson, Paul T. ; Li, Tao ; He, Miaoling ; Zhang, Hongyong ; Malfatti, Michael ; Gandara, David ; Grimminger, Peter P. ; Danenberg, Kathleen D. ; Beckett, Laurel ; de Vere White, Ralph W. ; Turteltaub, Kenneth W. ; Pan, Chong‐Xian</creator><creatorcontrib>Henderson, Paul T. ; Li, Tao ; He, Miaoling ; Zhang, Hongyong ; Malfatti, Michael ; Gandara, David ; Grimminger, Peter P. ; Danenberg, Kathleen D. ; Beckett, Laurel ; de Vere White, Ralph W. ; Turteltaub, Kenneth W. ; Pan, Chong‐Xian</creatorcontrib><description>Formation and repair of platinum (Pt)‐induced DNA adducts is a critical step in Pt drug‐mediated cytotoxicity. Measurement of Pt–DNA adduct kinetics in tumors may be useful for better understanding chemoresistance and therapeutic response. However, this concept has yet to be rigorously tested because of technical challenges in measuring the adducts at low concentrations and consistent access to sufficient tumor biopsy material. Ultrasensitive accelerator mass spectrometry was used to detect [14C]carboplatin–DNA monoadducts at the attomole level, which are the precursors to Pt–DNA crosslink formation, in six cancer cell lines as a proof‐of‐concept. The most resistant cells had the lowest monoadduct levels at all time points over 24 hr. [14C]Carboplatin “microdoses” (1/100th the pharmacologically effective concentration) had nearly identical adduct formation and repair kinetics compared to therapeutically relevant doses, suggesting that the microdosing approach can potentially be used to determine the pharmacological effects of therapeutic treatment. Some of the possible chemoresistance mechanisms were also studied, such as drug uptake/efflux, intracellular inactivation and DNA repair in selected cell lines. Intracellular inactivation and efficient DNA repair each contributed significantly to the suppression of DNA monoadduct formation in the most resistant cell line compared to the most sensitive cell line studied (p &lt; 0.001). Nucleotide excision repair (NER)‐deficient and ‐proficient cells showed substantial differences in carboplatin monoadduct concentrations over 24 hr that likely contributed to chemoresistance. The data support the utility of carboplatin microdosing as a translatable approach for defining carboplatin–DNA monoadduct formation and repair, possibly by NER, which may be useful for characterizing chemoresistance in vivo.</description><identifier>ISSN: 0020-7136</identifier><identifier>ISSN: 1097-0215</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.25814</identifier><identifier>PMID: 21128223</identifier><identifier>CODEN: IJCNAW</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>accelerator mass spectrometry ; Antineoplastic agents ; Antineoplastic Agents - metabolism ; Biological and medical sciences ; Carboplatin - administration &amp; dosage ; Carboplatin - chemistry ; Carboplatin - metabolism ; Carboplatin - therapeutic use ; Cell Line, Tumor ; chemoresistance ; DNA Adducts - metabolism ; DNA Damage ; DNA Repair ; Drug Administration Schedule ; Drug Resistance, Neoplasm ; General aspects ; Glutathione - analysis ; Humans ; Inhibitory Concentration 50 ; Mass Spectrometry ; Medical sciences ; microdosing ; Multiple tumors. Solid tumors. Tumors in childhood (general aspects) ; Pharmacology. Drug treatments ; platinum chemotherapy ; Tumors</subject><ispartof>International journal of cancer, 2011-09, Vol.129 (6), p.1425-1434</ispartof><rights>Copyright © 2010 UICC</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 UICC.</rights><rights>2010 UICC 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5434-f64a54f0d2e6308e67c119d6a112b3747ee50163c877b4e7fdf825b1b0af1c213</citedby><cites>FETCH-LOGICAL-c5434-f64a54f0d2e6308e67c119d6a112b3747ee50163c877b4e7fdf825b1b0af1c213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.25814$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.25814$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24459002$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21128223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henderson, Paul T.</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>He, Miaoling</creatorcontrib><creatorcontrib>Zhang, Hongyong</creatorcontrib><creatorcontrib>Malfatti, Michael</creatorcontrib><creatorcontrib>Gandara, David</creatorcontrib><creatorcontrib>Grimminger, Peter P.</creatorcontrib><creatorcontrib>Danenberg, Kathleen D.</creatorcontrib><creatorcontrib>Beckett, Laurel</creatorcontrib><creatorcontrib>de Vere White, Ralph W.</creatorcontrib><creatorcontrib>Turteltaub, Kenneth W.</creatorcontrib><creatorcontrib>Pan, Chong‐Xian</creatorcontrib><title>A microdosing approach for characterizing formation and repair of carboplatin–DNA monoadducts and chemoresistance</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Formation and repair of platinum (Pt)‐induced DNA adducts is a critical step in Pt drug‐mediated cytotoxicity. Measurement of Pt–DNA adduct kinetics in tumors may be useful for better understanding chemoresistance and therapeutic response. However, this concept has yet to be rigorously tested because of technical challenges in measuring the adducts at low concentrations and consistent access to sufficient tumor biopsy material. Ultrasensitive accelerator mass spectrometry was used to detect [14C]carboplatin–DNA monoadducts at the attomole level, which are the precursors to Pt–DNA crosslink formation, in six cancer cell lines as a proof‐of‐concept. The most resistant cells had the lowest monoadduct levels at all time points over 24 hr. [14C]Carboplatin “microdoses” (1/100th the pharmacologically effective concentration) had nearly identical adduct formation and repair kinetics compared to therapeutically relevant doses, suggesting that the microdosing approach can potentially be used to determine the pharmacological effects of therapeutic treatment. Some of the possible chemoresistance mechanisms were also studied, such as drug uptake/efflux, intracellular inactivation and DNA repair in selected cell lines. Intracellular inactivation and efficient DNA repair each contributed significantly to the suppression of DNA monoadduct formation in the most resistant cell line compared to the most sensitive cell line studied (p &lt; 0.001). Nucleotide excision repair (NER)‐deficient and ‐proficient cells showed substantial differences in carboplatin monoadduct concentrations over 24 hr that likely contributed to chemoresistance. The data support the utility of carboplatin microdosing as a translatable approach for defining carboplatin–DNA monoadduct formation and repair, possibly by NER, which may be useful for characterizing chemoresistance in vivo.</description><subject>accelerator mass spectrometry</subject><subject>Antineoplastic agents</subject><subject>Antineoplastic Agents - metabolism</subject><subject>Biological and medical sciences</subject><subject>Carboplatin - administration &amp; dosage</subject><subject>Carboplatin - chemistry</subject><subject>Carboplatin - metabolism</subject><subject>Carboplatin - therapeutic use</subject><subject>Cell Line, Tumor</subject><subject>chemoresistance</subject><subject>DNA Adducts - metabolism</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Drug Administration Schedule</subject><subject>Drug Resistance, Neoplasm</subject><subject>General aspects</subject><subject>Glutathione - analysis</subject><subject>Humans</subject><subject>Inhibitory Concentration 50</subject><subject>Mass Spectrometry</subject><subject>Medical sciences</subject><subject>microdosing</subject><subject>Multiple tumors. Solid tumors. Tumors in childhood (general aspects)</subject><subject>Pharmacology. Drug treatments</subject><subject>platinum chemotherapy</subject><subject>Tumors</subject><issn>0020-7136</issn><issn>1097-0215</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAURS0EokNhwQ-gbJBgkdbPsZPMBqmaQimqYANr68V57rhK7GBnqNpV_4E_5EvqdoYCC1aWfI_ufbqXsZfAD4BzceguzIFQLchHbAF82ZRcgHrMFlnjZQNVvceepXTBOYDi8inbEwCiFaJasHRUjM7E0Ifk_HmB0xQDmnVhQyzMGiOamaK7vtPy14izC75A3xeRJnSxCLYwGLswDVnyv25-Hn_OjsEH7PuNmdM9a9Y0hkjJpRm9oefsicUh0Yvdu8--fXj_dfWxPPtycro6OiuNkpUsbS1RSct7QXXFW6obA7Dsa8zHd1UjGyLFoa5M2zSdpMb2thWqg46jBSOg2mfvtr7TphupN-TniIOeohsxXumATv-reLfW5-GHrkAqzuts8GZnEMP3DaVZjy4ZGgb0FDZJQ-63lSBhmdG3WzR3mVIk-xADXN-NpPNI-n6kzL76-64H8vcqGXi9AzAZHGzMrbn0h5NSLbNl5g633KUb6Or_ifr002obfQtivave</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Henderson, Paul T.</creator><creator>Li, Tao</creator><creator>He, Miaoling</creator><creator>Zhang, Hongyong</creator><creator>Malfatti, Michael</creator><creator>Gandara, David</creator><creator>Grimminger, Peter P.</creator><creator>Danenberg, Kathleen D.</creator><creator>Beckett, Laurel</creator><creator>de Vere White, Ralph W.</creator><creator>Turteltaub, Kenneth W.</creator><creator>Pan, Chong‐Xian</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20110915</creationdate><title>A microdosing approach for characterizing formation and repair of carboplatin–DNA monoadducts and chemoresistance</title><author>Henderson, Paul T. ; Li, Tao ; He, Miaoling ; Zhang, Hongyong ; Malfatti, Michael ; Gandara, David ; Grimminger, Peter P. ; Danenberg, Kathleen D. ; Beckett, Laurel ; de Vere White, Ralph W. ; Turteltaub, Kenneth W. ; Pan, Chong‐Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5434-f64a54f0d2e6308e67c119d6a112b3747ee50163c877b4e7fdf825b1b0af1c213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>accelerator mass spectrometry</topic><topic>Antineoplastic agents</topic><topic>Antineoplastic Agents - metabolism</topic><topic>Biological and medical sciences</topic><topic>Carboplatin - administration &amp; dosage</topic><topic>Carboplatin - chemistry</topic><topic>Carboplatin - metabolism</topic><topic>Carboplatin - therapeutic use</topic><topic>Cell Line, Tumor</topic><topic>chemoresistance</topic><topic>DNA Adducts - metabolism</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Drug Administration Schedule</topic><topic>Drug Resistance, Neoplasm</topic><topic>General aspects</topic><topic>Glutathione - analysis</topic><topic>Humans</topic><topic>Inhibitory Concentration 50</topic><topic>Mass Spectrometry</topic><topic>Medical sciences</topic><topic>microdosing</topic><topic>Multiple tumors. Solid tumors. Tumors in childhood (general aspects)</topic><topic>Pharmacology. Drug treatments</topic><topic>platinum chemotherapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henderson, Paul T.</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>He, Miaoling</creatorcontrib><creatorcontrib>Zhang, Hongyong</creatorcontrib><creatorcontrib>Malfatti, Michael</creatorcontrib><creatorcontrib>Gandara, David</creatorcontrib><creatorcontrib>Grimminger, Peter P.</creatorcontrib><creatorcontrib>Danenberg, Kathleen D.</creatorcontrib><creatorcontrib>Beckett, Laurel</creatorcontrib><creatorcontrib>de Vere White, Ralph W.</creatorcontrib><creatorcontrib>Turteltaub, Kenneth W.</creatorcontrib><creatorcontrib>Pan, Chong‐Xian</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henderson, Paul T.</au><au>Li, Tao</au><au>He, Miaoling</au><au>Zhang, Hongyong</au><au>Malfatti, Michael</au><au>Gandara, David</au><au>Grimminger, Peter P.</au><au>Danenberg, Kathleen D.</au><au>Beckett, Laurel</au><au>de Vere White, Ralph W.</au><au>Turteltaub, Kenneth W.</au><au>Pan, Chong‐Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microdosing approach for characterizing formation and repair of carboplatin–DNA monoadducts and chemoresistance</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2011-09-15</date><risdate>2011</risdate><volume>129</volume><issue>6</issue><spage>1425</spage><epage>1434</epage><pages>1425-1434</pages><issn>0020-7136</issn><issn>1097-0215</issn><eissn>1097-0215</eissn><coden>IJCNAW</coden><abstract>Formation and repair of platinum (Pt)‐induced DNA adducts is a critical step in Pt drug‐mediated cytotoxicity. Measurement of Pt–DNA adduct kinetics in tumors may be useful for better understanding chemoresistance and therapeutic response. However, this concept has yet to be rigorously tested because of technical challenges in measuring the adducts at low concentrations and consistent access to sufficient tumor biopsy material. Ultrasensitive accelerator mass spectrometry was used to detect [14C]carboplatin–DNA monoadducts at the attomole level, which are the precursors to Pt–DNA crosslink formation, in six cancer cell lines as a proof‐of‐concept. The most resistant cells had the lowest monoadduct levels at all time points over 24 hr. [14C]Carboplatin “microdoses” (1/100th the pharmacologically effective concentration) had nearly identical adduct formation and repair kinetics compared to therapeutically relevant doses, suggesting that the microdosing approach can potentially be used to determine the pharmacological effects of therapeutic treatment. Some of the possible chemoresistance mechanisms were also studied, such as drug uptake/efflux, intracellular inactivation and DNA repair in selected cell lines. Intracellular inactivation and efficient DNA repair each contributed significantly to the suppression of DNA monoadduct formation in the most resistant cell line compared to the most sensitive cell line studied (p &lt; 0.001). Nucleotide excision repair (NER)‐deficient and ‐proficient cells showed substantial differences in carboplatin monoadduct concentrations over 24 hr that likely contributed to chemoresistance. The data support the utility of carboplatin microdosing as a translatable approach for defining carboplatin–DNA monoadduct formation and repair, possibly by NER, which may be useful for characterizing chemoresistance in vivo.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21128223</pmid><doi>10.1002/ijc.25814</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7136
ispartof International journal of cancer, 2011-09, Vol.129 (6), p.1425-1434
issn 0020-7136
1097-0215
1097-0215
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3145006
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals
subjects accelerator mass spectrometry
Antineoplastic agents
Antineoplastic Agents - metabolism
Biological and medical sciences
Carboplatin - administration & dosage
Carboplatin - chemistry
Carboplatin - metabolism
Carboplatin - therapeutic use
Cell Line, Tumor
chemoresistance
DNA Adducts - metabolism
DNA Damage
DNA Repair
Drug Administration Schedule
Drug Resistance, Neoplasm
General aspects
Glutathione - analysis
Humans
Inhibitory Concentration 50
Mass Spectrometry
Medical sciences
microdosing
Multiple tumors. Solid tumors. Tumors in childhood (general aspects)
Pharmacology. Drug treatments
platinum chemotherapy
Tumors
title A microdosing approach for characterizing formation and repair of carboplatin–DNA monoadducts and chemoresistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microdosing%20approach%20for%20characterizing%20formation%20and%20repair%20of%20carboplatin%E2%80%93DNA%20monoadducts%20and%20chemoresistance&rft.jtitle=International%20journal%20of%20cancer&rft.au=Henderson,%20Paul%20T.&rft.date=2011-09-15&rft.volume=129&rft.issue=6&rft.spage=1425&rft.epage=1434&rft.pages=1425-1434&rft.issn=0020-7136&rft.eissn=1097-0215&rft.coden=IJCNAW&rft_id=info:doi/10.1002/ijc.25814&rft_dat=%3Cproquest_pubme%3E1020841419%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020841419&rft_id=info:pmid/21128223&rfr_iscdi=true