Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection

Erythrocytes, which are incapable of endocytosis or phagocytosis, can be infected by the malaria parasite Plasmodium falciparum . We find that a transmembrane protein (Duffy), glycosylphosphatidylinositol (GPI)‐anchored and cytoplasmic proteins, associated with detergent‐resistant membranes (DRMs) t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2000-07, Vol.19 (14), p.3556-3564
Hauptverfasser: Lauer, Sabine, VanWye, Jeffrey, Harrison, Travis, McManus, Heather, Samuel, Benjamin U., Hiller, N.Luisa, Mohandas, Narla, Haldar, Kasturi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3564
container_issue 14
container_start_page 3556
container_title The EMBO journal
container_volume 19
creator Lauer, Sabine
VanWye, Jeffrey
Harrison, Travis
McManus, Heather
Samuel, Benjamin U.
Hiller, N.Luisa
Mohandas, Narla
Haldar, Kasturi
description Erythrocytes, which are incapable of endocytosis or phagocytosis, can be infected by the malaria parasite Plasmodium falciparum . We find that a transmembrane protein (Duffy), glycosylphosphatidylinositol (GPI)‐anchored and cytoplasmic proteins, associated with detergent‐resistant membranes (DRMs) that are characteristic of microdomains in host cell membranes, are internalized by vacuolar parasites, while the major integral membrane and cytoskeletal proteins are not. The internalized host proteins and a plasmodial transmembrane resident parasitophorous vacuolar membrane (PVM) protein are detected in DRMs associated with vacuolar parasites. This is the first report of a host transmembrane protein being recruited into an apicomplexan vacuole and of the presence of vacuolar DRMs; it establishes that integral association does not preclude protein internalization into the P.falciparum vacuole. Rather, as shown for Duffy, intracellular accumulation occurs at the same rate as that seen for a DRM‐associated GPI‐anchored protein. Furthermore, novel mechanisms regulated by the DRM lipids, sphingomyelin and cholesterol, mediate (i) the uptake of host DRM proteins and (ii) maintenance of the intracellular vacuole in the non‐endocytic red cell, which may have implications for intracellular parasitism and pathogenesis.
doi_str_mv 10.1093/emboj/19.14.3556
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_313993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71250011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6674-19e4c95b9fc584ddeaaa3d3f204da670ded4fd1b7b3c82747db9dd0d1bc86da23</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EotvCnQso4tAT2XpiO44PPUBVFlD5OPAlLpZjO7vZJvZiJ8D-e9ymWhYkVMmSrZn3eT3jMUKPAM8BC3Ji-9qvT0DMgc4JY-UdNANa4rzAnN1FM1yUkFOoxAE6jHGNMWYVh_voAHAlBACeoeaz0qPvVMjGzaAubeabbOXjkGnfb7yzbojPMuVMprLgO5s1PmR6lU5xsClwnYqbVeuWvt_arnVZWr1Khq3q0rmxemi9e4DuNaqL9uHNfoQ-vTz_ePYqv3i_eH32_CLXZclpDsJSLVgtGs0qaoxVShFDmgJTo0qOjTW0MVDzmuiq4JSbWhiDU0RXpVEFOUKnk-9mrHtrdKo_qE5uQtursJVetfLvjGtXcul_SAJECJL44xs--O9jalL2bdS265SzfoySQ8EwBrhVCLwkFDhOwqf_CNd-DC49ggTBipJhwpIITyIdfIzBNruKAcurScvrSSdCApVXk07Ik_1O94BptEkgJsHPtrPbWw3l-dsXbzgTBDhNLExsTJhb2rBX9P8LejwxTg1jsLsL_3jmU75NX-fXLq3CpSw54Ux-ebeQ1VdKFx--ESnIb2-y4yo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195265035</pqid></control><display><type>article</type><title>Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection</title><source>MEDLINE</source><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lauer, Sabine ; VanWye, Jeffrey ; Harrison, Travis ; McManus, Heather ; Samuel, Benjamin U. ; Hiller, N.Luisa ; Mohandas, Narla ; Haldar, Kasturi</creator><creatorcontrib>Lauer, Sabine ; VanWye, Jeffrey ; Harrison, Travis ; McManus, Heather ; Samuel, Benjamin U. ; Hiller, N.Luisa ; Mohandas, Narla ; Haldar, Kasturi</creatorcontrib><description>Erythrocytes, which are incapable of endocytosis or phagocytosis, can be infected by the malaria parasite Plasmodium falciparum . We find that a transmembrane protein (Duffy), glycosylphosphatidylinositol (GPI)‐anchored and cytoplasmic proteins, associated with detergent‐resistant membranes (DRMs) that are characteristic of microdomains in host cell membranes, are internalized by vacuolar parasites, while the major integral membrane and cytoskeletal proteins are not. The internalized host proteins and a plasmodial transmembrane resident parasitophorous vacuolar membrane (PVM) protein are detected in DRMs associated with vacuolar parasites. This is the first report of a host transmembrane protein being recruited into an apicomplexan vacuole and of the presence of vacuolar DRMs; it establishes that integral association does not preclude protein internalization into the P.falciparum vacuole. Rather, as shown for Duffy, intracellular accumulation occurs at the same rate as that seen for a DRM‐associated GPI‐anchored protein. Furthermore, novel mechanisms regulated by the DRM lipids, sphingomyelin and cholesterol, mediate (i) the uptake of host DRM proteins and (ii) maintenance of the intracellular vacuole in the non‐endocytic red cell, which may have implications for intracellular parasitism and pathogenesis.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/19.14.3556</identifier><identifier>PMID: 10899110</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animals ; Antigens, Protozoan ; Biomarkers ; Carrier Proteins - metabolism ; CD59 Antigens - metabolism ; Centrifugation, Density Gradient ; Cholesterol ; Cholesterol - deficiency ; Cholesterol - metabolism ; Detergents - pharmacology ; DRM protein ; Endocytosis ; Erythrocyte Membrane - drug effects ; Erythrocyte Membrane - metabolism ; Erythrocyte Membrane - parasitology ; erythrocytes ; Filipin - metabolism ; Fluorescent Antibody Technique, Indirect ; Glycosylphosphatidylinositols - metabolism ; Kinetics ; Lipids ; Malaria ; Malaria - metabolism ; Malaria - parasitology ; Malaria - pathology ; Membrane Lipids - metabolism ; Membranes ; microdomains ; Parasites ; Parasitism ; Phagocytosis ; Plasmodium falciparum ; Plasmodium falciparum - cytology ; Plasmodium falciparum - physiology ; Proteins ; Protozoan Proteins ; PVM protein ; Receptors, Cell Surface - metabolism ; sphingomyelin ; Sphingomyelins - biosynthesis ; Sphingomyelins - metabolism ; trafficking ; Vacuoles - chemistry ; Vacuoles - drug effects ; Vacuoles - metabolism ; Vector-borne diseases</subject><ispartof>The EMBO journal, 2000-07, Vol.19 (14), p.3556-3564</ispartof><rights>European Molecular Biology Organization 2000</rights><rights>Copyright © 2000 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Jul 17, 2000</rights><rights>Copyright © 2000 European Molecular Biology Organization 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6674-19e4c95b9fc584ddeaaa3d3f204da670ded4fd1b7b3c82747db9dd0d1bc86da23</citedby><cites>FETCH-LOGICAL-c6674-19e4c95b9fc584ddeaaa3d3f204da670ded4fd1b7b3c82747db9dd0d1bc86da23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC313993/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC313993/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10899110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lauer, Sabine</creatorcontrib><creatorcontrib>VanWye, Jeffrey</creatorcontrib><creatorcontrib>Harrison, Travis</creatorcontrib><creatorcontrib>McManus, Heather</creatorcontrib><creatorcontrib>Samuel, Benjamin U.</creatorcontrib><creatorcontrib>Hiller, N.Luisa</creatorcontrib><creatorcontrib>Mohandas, Narla</creatorcontrib><creatorcontrib>Haldar, Kasturi</creatorcontrib><title>Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Erythrocytes, which are incapable of endocytosis or phagocytosis, can be infected by the malaria parasite Plasmodium falciparum . We find that a transmembrane protein (Duffy), glycosylphosphatidylinositol (GPI)‐anchored and cytoplasmic proteins, associated with detergent‐resistant membranes (DRMs) that are characteristic of microdomains in host cell membranes, are internalized by vacuolar parasites, while the major integral membrane and cytoskeletal proteins are not. The internalized host proteins and a plasmodial transmembrane resident parasitophorous vacuolar membrane (PVM) protein are detected in DRMs associated with vacuolar parasites. This is the first report of a host transmembrane protein being recruited into an apicomplexan vacuole and of the presence of vacuolar DRMs; it establishes that integral association does not preclude protein internalization into the P.falciparum vacuole. Rather, as shown for Duffy, intracellular accumulation occurs at the same rate as that seen for a DRM‐associated GPI‐anchored protein. Furthermore, novel mechanisms regulated by the DRM lipids, sphingomyelin and cholesterol, mediate (i) the uptake of host DRM proteins and (ii) maintenance of the intracellular vacuole in the non‐endocytic red cell, which may have implications for intracellular parasitism and pathogenesis.</description><subject>Animals</subject><subject>Antigens, Protozoan</subject><subject>Biomarkers</subject><subject>Carrier Proteins - metabolism</subject><subject>CD59 Antigens - metabolism</subject><subject>Centrifugation, Density Gradient</subject><subject>Cholesterol</subject><subject>Cholesterol - deficiency</subject><subject>Cholesterol - metabolism</subject><subject>Detergents - pharmacology</subject><subject>DRM protein</subject><subject>Endocytosis</subject><subject>Erythrocyte Membrane - drug effects</subject><subject>Erythrocyte Membrane - metabolism</subject><subject>Erythrocyte Membrane - parasitology</subject><subject>erythrocytes</subject><subject>Filipin - metabolism</subject><subject>Fluorescent Antibody Technique, Indirect</subject><subject>Glycosylphosphatidylinositols - metabolism</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Malaria</subject><subject>Malaria - metabolism</subject><subject>Malaria - parasitology</subject><subject>Malaria - pathology</subject><subject>Membrane Lipids - metabolism</subject><subject>Membranes</subject><subject>microdomains</subject><subject>Parasites</subject><subject>Parasitism</subject><subject>Phagocytosis</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - cytology</subject><subject>Plasmodium falciparum - physiology</subject><subject>Proteins</subject><subject>Protozoan Proteins</subject><subject>PVM protein</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>sphingomyelin</subject><subject>Sphingomyelins - biosynthesis</subject><subject>Sphingomyelins - metabolism</subject><subject>trafficking</subject><subject>Vacuoles - chemistry</subject><subject>Vacuoles - drug effects</subject><subject>Vacuoles - metabolism</subject><subject>Vector-borne diseases</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkk1v1DAQhi0EotvCnQso4tAT2XpiO44PPUBVFlD5OPAlLpZjO7vZJvZiJ8D-e9ymWhYkVMmSrZn3eT3jMUKPAM8BC3Ji-9qvT0DMgc4JY-UdNANa4rzAnN1FM1yUkFOoxAE6jHGNMWYVh_voAHAlBACeoeaz0qPvVMjGzaAubeabbOXjkGnfb7yzbojPMuVMprLgO5s1PmR6lU5xsClwnYqbVeuWvt_arnVZWr1Khq3q0rmxemi9e4DuNaqL9uHNfoQ-vTz_ePYqv3i_eH32_CLXZclpDsJSLVgtGs0qaoxVShFDmgJTo0qOjTW0MVDzmuiq4JSbWhiDU0RXpVEFOUKnk-9mrHtrdKo_qE5uQtursJVetfLvjGtXcul_SAJECJL44xs--O9jalL2bdS265SzfoySQ8EwBrhVCLwkFDhOwqf_CNd-DC49ggTBipJhwpIITyIdfIzBNruKAcurScvrSSdCApVXk07Ik_1O94BptEkgJsHPtrPbWw3l-dsXbzgTBDhNLExsTJhb2rBX9P8LejwxTg1jsLsL_3jmU75NX-fXLq3CpSw54Ux-ebeQ1VdKFx--ESnIb2-y4yo</recordid><startdate>20000717</startdate><enddate>20000717</enddate><creator>Lauer, Sabine</creator><creator>VanWye, Jeffrey</creator><creator>Harrison, Travis</creator><creator>McManus, Heather</creator><creator>Samuel, Benjamin U.</creator><creator>Hiller, N.Luisa</creator><creator>Mohandas, Narla</creator><creator>Haldar, Kasturi</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000717</creationdate><title>Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection</title><author>Lauer, Sabine ; VanWye, Jeffrey ; Harrison, Travis ; McManus, Heather ; Samuel, Benjamin U. ; Hiller, N.Luisa ; Mohandas, Narla ; Haldar, Kasturi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6674-19e4c95b9fc584ddeaaa3d3f204da670ded4fd1b7b3c82747db9dd0d1bc86da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Antigens, Protozoan</topic><topic>Biomarkers</topic><topic>Carrier Proteins - metabolism</topic><topic>CD59 Antigens - metabolism</topic><topic>Centrifugation, Density Gradient</topic><topic>Cholesterol</topic><topic>Cholesterol - deficiency</topic><topic>Cholesterol - metabolism</topic><topic>Detergents - pharmacology</topic><topic>DRM protein</topic><topic>Endocytosis</topic><topic>Erythrocyte Membrane - drug effects</topic><topic>Erythrocyte Membrane - metabolism</topic><topic>Erythrocyte Membrane - parasitology</topic><topic>erythrocytes</topic><topic>Filipin - metabolism</topic><topic>Fluorescent Antibody Technique, Indirect</topic><topic>Glycosylphosphatidylinositols - metabolism</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Malaria</topic><topic>Malaria - metabolism</topic><topic>Malaria - parasitology</topic><topic>Malaria - pathology</topic><topic>Membrane Lipids - metabolism</topic><topic>Membranes</topic><topic>microdomains</topic><topic>Parasites</topic><topic>Parasitism</topic><topic>Phagocytosis</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - cytology</topic><topic>Plasmodium falciparum - physiology</topic><topic>Proteins</topic><topic>Protozoan Proteins</topic><topic>PVM protein</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>sphingomyelin</topic><topic>Sphingomyelins - biosynthesis</topic><topic>Sphingomyelins - metabolism</topic><topic>trafficking</topic><topic>Vacuoles - chemistry</topic><topic>Vacuoles - drug effects</topic><topic>Vacuoles - metabolism</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauer, Sabine</creatorcontrib><creatorcontrib>VanWye, Jeffrey</creatorcontrib><creatorcontrib>Harrison, Travis</creatorcontrib><creatorcontrib>McManus, Heather</creatorcontrib><creatorcontrib>Samuel, Benjamin U.</creatorcontrib><creatorcontrib>Hiller, N.Luisa</creatorcontrib><creatorcontrib>Mohandas, Narla</creatorcontrib><creatorcontrib>Haldar, Kasturi</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauer, Sabine</au><au>VanWye, Jeffrey</au><au>Harrison, Travis</au><au>McManus, Heather</au><au>Samuel, Benjamin U.</au><au>Hiller, N.Luisa</au><au>Mohandas, Narla</au><au>Haldar, Kasturi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2000-07-17</date><risdate>2000</risdate><volume>19</volume><issue>14</issue><spage>3556</spage><epage>3564</epage><pages>3556-3564</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Erythrocytes, which are incapable of endocytosis or phagocytosis, can be infected by the malaria parasite Plasmodium falciparum . We find that a transmembrane protein (Duffy), glycosylphosphatidylinositol (GPI)‐anchored and cytoplasmic proteins, associated with detergent‐resistant membranes (DRMs) that are characteristic of microdomains in host cell membranes, are internalized by vacuolar parasites, while the major integral membrane and cytoskeletal proteins are not. The internalized host proteins and a plasmodial transmembrane resident parasitophorous vacuolar membrane (PVM) protein are detected in DRMs associated with vacuolar parasites. This is the first report of a host transmembrane protein being recruited into an apicomplexan vacuole and of the presence of vacuolar DRMs; it establishes that integral association does not preclude protein internalization into the P.falciparum vacuole. Rather, as shown for Duffy, intracellular accumulation occurs at the same rate as that seen for a DRM‐associated GPI‐anchored protein. Furthermore, novel mechanisms regulated by the DRM lipids, sphingomyelin and cholesterol, mediate (i) the uptake of host DRM proteins and (ii) maintenance of the intracellular vacuole in the non‐endocytic red cell, which may have implications for intracellular parasitism and pathogenesis.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>10899110</pmid><doi>10.1093/emboj/19.14.3556</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2000-07, Vol.19 (14), p.3556-3564
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_313993
source MEDLINE; Wiley Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Antigens, Protozoan
Biomarkers
Carrier Proteins - metabolism
CD59 Antigens - metabolism
Centrifugation, Density Gradient
Cholesterol
Cholesterol - deficiency
Cholesterol - metabolism
Detergents - pharmacology
DRM protein
Endocytosis
Erythrocyte Membrane - drug effects
Erythrocyte Membrane - metabolism
Erythrocyte Membrane - parasitology
erythrocytes
Filipin - metabolism
Fluorescent Antibody Technique, Indirect
Glycosylphosphatidylinositols - metabolism
Kinetics
Lipids
Malaria
Malaria - metabolism
Malaria - parasitology
Malaria - pathology
Membrane Lipids - metabolism
Membranes
microdomains
Parasites
Parasitism
Phagocytosis
Plasmodium falciparum
Plasmodium falciparum - cytology
Plasmodium falciparum - physiology
Proteins
Protozoan Proteins
PVM protein
Receptors, Cell Surface - metabolism
sphingomyelin
Sphingomyelins - biosynthesis
Sphingomyelins - metabolism
trafficking
Vacuoles - chemistry
Vacuoles - drug effects
Vacuoles - metabolism
Vector-borne diseases
title Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuolar%20uptake%20of%20host%20components,%20and%20a%20role%20for%20cholesterol%20and%20sphingomyelin%20in%20malarial%20infection&rft.jtitle=The%20EMBO%20journal&rft.au=Lauer,%20Sabine&rft.date=2000-07-17&rft.volume=19&rft.issue=14&rft.spage=3556&rft.epage=3564&rft.pages=3556-3564&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/19.14.3556&rft_dat=%3Cproquest_pubme%3E71250011%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195265035&rft_id=info:pmid/10899110&rfr_iscdi=true