Managing Biomedical Image Metadata for Search and Retrieval of Similar Images

Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations (“semantic” metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2011-08, Vol.24 (4), p.739-748
Hauptverfasser: Korenblum, Daniel, Rubin, Daniel, Napel, Sandy, Rodriguez, Cesar, Beaulieu, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 748
container_issue 4
container_start_page 739
container_title Journal of digital imaging
container_volume 24
creator Korenblum, Daniel
Rubin, Daniel
Napel, Sandy
Rodriguez, Cesar
Beaulieu, Chris
description Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations (“semantic” metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to (1) address the problem of managing biomedical image metadata and (2) facilitate the retrieval of similar images using semantic feature metadata. Our approach allows radiologists, researchers, and students to take advantage of the vast and growing repositories of medical image data by explicitly linking images to their associated metadata in a relational database that is globally accessible through a Web application. BIMM receives input in the form of standard-based metadata files using Web service and parses and stores the metadata in a relational database allowing efficient data query and maintenance capabilities. Upon querying BIMM for images, 2D regions of interest (ROIs) stored as metadata are automatically rendered onto preview images included in search results. The system’s “match observations” function retrieves images with similar ROIs based on specific semantic features describing imaging observation characteristics (IOCs). We demonstrate that the system, using IOCs alone, can accurately retrieve images with diagnoses matching the query images, and we evaluate its performance on a set of annotated liver lesion images. BIMM has several potential applications, e.g., computer-aided detection and diagnosis, content-based image retrieval, automating medical analysis protocols, and gathering population statistics like disease prevalences. The system provides a framework for decision support systems, potentially improving their diagnostic accuracy and selection of appropriate therapies.
doi_str_mv 10.1007/s10278-010-9328-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3138941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>878277080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-bb668016fab07da5b73637a9a899048738dffbeef2702e18dd308513b1c45b933</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhS1ERS-FB2CDIjasQmfiJB5vkGjFT6VeIVGQ2FmTxEldJXGxcyvRp8dVSluQEKtZzHfOHPsI8QLhDQKow4hQKMoBIdeyoPz6kdhgjZSrQn1_LDZAWuVIpPfF0xgvAFBVqnwi9gugstSoNmK75ZkHNw_ZkfOT7VzLY3Yy8WCzrV2444Wz3ofszHJozzOeu-yLXYKzV4nzfXbmJjdyWCXxmdjreYz2-e08EN8-vP96_Ck__fzx5Pjdad5Wdb3kTVPXBFj33IDquGqUrKVizaQ1lKQkdX3fWNsXCgqL1HUSqELZYFtWjZbyQLxdfS93TQrd2nkJPJrL4CYOP41nZ_7czO7cDP7KSJSkS0wGr28Ngv-xs3Exk4utHUeerd9Fo1O6GqWm_5KkqFAKCBL56i_ywu_CnP4hQYqqMjEJwhVqg48x2P4uNIK5KdWspZpUqrkp1VwnzcuHr71T_G4xAcUKxLSaBxvuL__b9RdssazX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>877854803</pqid></control><display><type>article</type><title>Managing Biomedical Image Metadata for Search and Retrieval of Similar Images</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Korenblum, Daniel ; Rubin, Daniel ; Napel, Sandy ; Rodriguez, Cesar ; Beaulieu, Chris</creator><creatorcontrib>Korenblum, Daniel ; Rubin, Daniel ; Napel, Sandy ; Rodriguez, Cesar ; Beaulieu, Chris</creatorcontrib><description>Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations (“semantic” metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to (1) address the problem of managing biomedical image metadata and (2) facilitate the retrieval of similar images using semantic feature metadata. Our approach allows radiologists, researchers, and students to take advantage of the vast and growing repositories of medical image data by explicitly linking images to their associated metadata in a relational database that is globally accessible through a Web application. BIMM receives input in the form of standard-based metadata files using Web service and parses and stores the metadata in a relational database allowing efficient data query and maintenance capabilities. Upon querying BIMM for images, 2D regions of interest (ROIs) stored as metadata are automatically rendered onto preview images included in search results. The system’s “match observations” function retrieves images with similar ROIs based on specific semantic features describing imaging observation characteristics (IOCs). We demonstrate that the system, using IOCs alone, can accurately retrieve images with diagnoses matching the query images, and we evaluate its performance on a set of annotated liver lesion images. BIMM has several potential applications, e.g., computer-aided detection and diagnosis, content-based image retrieval, automating medical analysis protocols, and gathering population statistics like disease prevalences. The system provides a framework for decision support systems, potentially improving their diagnostic accuracy and selection of appropriate therapies.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-010-9328-z</identifier><identifier>PMID: 20844917</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Algorithms ; Decision Support Techniques ; Humans ; Imaging ; Information Storage and Retrieval - methods ; Internet ; Medical ; Medical Informatics Applications ; Medicine ; Medicine &amp; Public Health ; Metadata ; Query processing ; Radiology ; Radiology Information Systems - organization &amp; administration ; Retrieval ; ROC Curve ; Searching ; Semantics ; Systems Integration ; Technology Assessment, Biomedical ; User-Computer Interface</subject><ispartof>Journal of digital imaging, 2011-08, Vol.24 (4), p.739-748</ispartof><rights>Society for Imaging Informatics in Medicine 2010</rights><rights>Society for Imaging Informatics in Medicine 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-bb668016fab07da5b73637a9a899048738dffbeef2702e18dd308513b1c45b933</citedby><cites>FETCH-LOGICAL-c566t-bb668016fab07da5b73637a9a899048738dffbeef2702e18dd308513b1c45b933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138941/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138941/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20844917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Korenblum, Daniel</creatorcontrib><creatorcontrib>Rubin, Daniel</creatorcontrib><creatorcontrib>Napel, Sandy</creatorcontrib><creatorcontrib>Rodriguez, Cesar</creatorcontrib><creatorcontrib>Beaulieu, Chris</creatorcontrib><title>Managing Biomedical Image Metadata for Search and Retrieval of Similar Images</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations (“semantic” metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to (1) address the problem of managing biomedical image metadata and (2) facilitate the retrieval of similar images using semantic feature metadata. Our approach allows radiologists, researchers, and students to take advantage of the vast and growing repositories of medical image data by explicitly linking images to their associated metadata in a relational database that is globally accessible through a Web application. BIMM receives input in the form of standard-based metadata files using Web service and parses and stores the metadata in a relational database allowing efficient data query and maintenance capabilities. Upon querying BIMM for images, 2D regions of interest (ROIs) stored as metadata are automatically rendered onto preview images included in search results. The system’s “match observations” function retrieves images with similar ROIs based on specific semantic features describing imaging observation characteristics (IOCs). We demonstrate that the system, using IOCs alone, can accurately retrieve images with diagnoses matching the query images, and we evaluate its performance on a set of annotated liver lesion images. BIMM has several potential applications, e.g., computer-aided detection and diagnosis, content-based image retrieval, automating medical analysis protocols, and gathering population statistics like disease prevalences. The system provides a framework for decision support systems, potentially improving their diagnostic accuracy and selection of appropriate therapies.</description><subject>Algorithms</subject><subject>Decision Support Techniques</subject><subject>Humans</subject><subject>Imaging</subject><subject>Information Storage and Retrieval - methods</subject><subject>Internet</subject><subject>Medical</subject><subject>Medical Informatics Applications</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metadata</subject><subject>Query processing</subject><subject>Radiology</subject><subject>Radiology Information Systems - organization &amp; administration</subject><subject>Retrieval</subject><subject>ROC Curve</subject><subject>Searching</subject><subject>Semantics</subject><subject>Systems Integration</subject><subject>Technology Assessment, Biomedical</subject><subject>User-Computer Interface</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc1u1TAQhS1ERS-FB2CDIjasQmfiJB5vkGjFT6VeIVGQ2FmTxEldJXGxcyvRp8dVSluQEKtZzHfOHPsI8QLhDQKow4hQKMoBIdeyoPz6kdhgjZSrQn1_LDZAWuVIpPfF0xgvAFBVqnwi9gugstSoNmK75ZkHNw_ZkfOT7VzLY3Yy8WCzrV2444Wz3ofszHJozzOeu-yLXYKzV4nzfXbmJjdyWCXxmdjreYz2-e08EN8-vP96_Ck__fzx5Pjdad5Wdb3kTVPXBFj33IDquGqUrKVizaQ1lKQkdX3fWNsXCgqL1HUSqELZYFtWjZbyQLxdfS93TQrd2nkJPJrL4CYOP41nZ_7czO7cDP7KSJSkS0wGr28Ngv-xs3Exk4utHUeerd9Fo1O6GqWm_5KkqFAKCBL56i_ywu_CnP4hQYqqMjEJwhVqg48x2P4uNIK5KdWspZpUqrkp1VwnzcuHr71T_G4xAcUKxLSaBxvuL__b9RdssazX</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Korenblum, Daniel</creator><creator>Rubin, Daniel</creator><creator>Napel, Sandy</creator><creator>Rodriguez, Cesar</creator><creator>Beaulieu, Chris</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110801</creationdate><title>Managing Biomedical Image Metadata for Search and Retrieval of Similar Images</title><author>Korenblum, Daniel ; Rubin, Daniel ; Napel, Sandy ; Rodriguez, Cesar ; Beaulieu, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-bb668016fab07da5b73637a9a899048738dffbeef2702e18dd308513b1c45b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Decision Support Techniques</topic><topic>Humans</topic><topic>Imaging</topic><topic>Information Storage and Retrieval - methods</topic><topic>Internet</topic><topic>Medical</topic><topic>Medical Informatics Applications</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metadata</topic><topic>Query processing</topic><topic>Radiology</topic><topic>Radiology Information Systems - organization &amp; administration</topic><topic>Retrieval</topic><topic>ROC Curve</topic><topic>Searching</topic><topic>Semantics</topic><topic>Systems Integration</topic><topic>Technology Assessment, Biomedical</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korenblum, Daniel</creatorcontrib><creatorcontrib>Rubin, Daniel</creatorcontrib><creatorcontrib>Napel, Sandy</creatorcontrib><creatorcontrib>Rodriguez, Cesar</creatorcontrib><creatorcontrib>Beaulieu, Chris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korenblum, Daniel</au><au>Rubin, Daniel</au><au>Napel, Sandy</au><au>Rodriguez, Cesar</au><au>Beaulieu, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Managing Biomedical Image Metadata for Search and Retrieval of Similar Images</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>24</volume><issue>4</issue><spage>739</spage><epage>748</epage><pages>739-748</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations (“semantic” metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to (1) address the problem of managing biomedical image metadata and (2) facilitate the retrieval of similar images using semantic feature metadata. Our approach allows radiologists, researchers, and students to take advantage of the vast and growing repositories of medical image data by explicitly linking images to their associated metadata in a relational database that is globally accessible through a Web application. BIMM receives input in the form of standard-based metadata files using Web service and parses and stores the metadata in a relational database allowing efficient data query and maintenance capabilities. Upon querying BIMM for images, 2D regions of interest (ROIs) stored as metadata are automatically rendered onto preview images included in search results. The system’s “match observations” function retrieves images with similar ROIs based on specific semantic features describing imaging observation characteristics (IOCs). We demonstrate that the system, using IOCs alone, can accurately retrieve images with diagnoses matching the query images, and we evaluate its performance on a set of annotated liver lesion images. BIMM has several potential applications, e.g., computer-aided detection and diagnosis, content-based image retrieval, automating medical analysis protocols, and gathering population statistics like disease prevalences. The system provides a framework for decision support systems, potentially improving their diagnostic accuracy and selection of appropriate therapies.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>20844917</pmid><doi>10.1007/s10278-010-9328-z</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-1889
ispartof Journal of digital imaging, 2011-08, Vol.24 (4), p.739-748
issn 0897-1889
1618-727X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3138941
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Algorithms
Decision Support Techniques
Humans
Imaging
Information Storage and Retrieval - methods
Internet
Medical
Medical Informatics Applications
Medicine
Medicine & Public Health
Metadata
Query processing
Radiology
Radiology Information Systems - organization & administration
Retrieval
ROC Curve
Searching
Semantics
Systems Integration
Technology Assessment, Biomedical
User-Computer Interface
title Managing Biomedical Image Metadata for Search and Retrieval of Similar Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Managing%20Biomedical%20Image%20Metadata%20for%20Search%20and%20Retrieval%20of%20Similar%20Images&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Korenblum,%20Daniel&rft.date=2011-08-01&rft.volume=24&rft.issue=4&rft.spage=739&rft.epage=748&rft.pages=739-748&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-010-9328-z&rft_dat=%3Cproquest_pubme%3E878277080%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=877854803&rft_id=info:pmid/20844917&rfr_iscdi=true