Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction
The present work evaluates the use of species distribution model (SDM) algorithms to classify high densities of small container‐breeding Aedes mosquitoes (Diptera: Culicidae) on a fine scale in the Bermuda Islands. Weekly ovitrap data collected by the Department of Health, Bermuda for the years 2006...
Gespeichert in:
Veröffentlicht in: | Medical and veterinary entomology 2011-09, Vol.25 (3), p.268-275 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 3 |
container_start_page | 268 |
container_title | Medical and veterinary entomology |
container_volume | 25 |
creator | KHATCHIKIAN, C. SANGERMANO, F. KENDELL, D. LIVDAHL, T. |
description | The present work evaluates the use of species distribution model (SDM) algorithms to classify high densities of small container‐breeding Aedes mosquitoes (Diptera: Culicidae) on a fine scale in the Bermuda Islands. Weekly ovitrap data collected by the Department of Health, Bermuda for the years 2006 and 2007 were used for the models. The models evaluated included the algorithms Bioclim, Domain, GARP (genetic algorithm for rule‐set prediction), logistic regression and MaxEnt (maximum entropy). Models were evaluated according to performance and robustness. The area under the receiver operating characteristic curve was used to evaluate each model's performance, and robustness was assessed according to the spatial correlation between classification risks for the two datasets. Relative to the other algorithms, logistic regression was the best and MaxEnt the second best model for classifying high‐risk areas. We describe the importance of covariables for these two models and discuss the utility of SDMs in vector control efforts and the potential for the development of scripts that automate the task of creating risk assessment maps. |
doi_str_mv | 10.1111/j.1365-2915.2010.00935.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3135728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>881470833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5705-77c6915eda244597fe2899fe28263f0d30ee47d0ec52042a50b66a41edea240b3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRCILgt_AVniwCmLP-I4lhASardbpAIXoL1ZjjPZepvEWzsp239fp1tWwAV8sMcz7z155hkhTMmCpvVus6C8EBlTVCwYSVlCFBeL3RM0OxSeohlhhcpYyS-P0IsYN4RQqRh7jo4YpaqUlM5Qv7w17WgG53vsGxy3YB1EXLs4BFeND_nO19Bi0659cMNVF3HjA25cD1m0pgVsfT-YdA1ZFQBq168TJd6MbvA4uHiNtyFl7aT1Ej1rTBvh1eM5R99Pl9-Oz7Lzr6tPxx_PMyskEZmUtkgtQG1YngslG2ClUtPOCt6QmhOAXNYErGAkZ0aQqihMTqGGxCAVn6MPe93tWHVQW-iHYFq9Da4z4U574_Sfld5d6bW_1ZxyIdPI5ujto0DwNyPEQXcuWmhb04Mfo1aEcVGSXP4TWZY0l6TkPCHf_IXc-DH0aQ6ailwkT2QuEqrco2zwMQZoDq-mRE_u642eTNaTyXpyXz-4r3eJ-vr3rg_EX3YnwPs94Kdr4e6_hfXnH8sUJHq2p6ffAbsD3YRrXUguhb74stKXJ2RFLrjSp_we0JTPHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545119745</pqid></control><display><type>article</type><title>Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>KHATCHIKIAN, C. ; SANGERMANO, F. ; KENDELL, D. ; LIVDAHL, T.</creator><creatorcontrib>KHATCHIKIAN, C. ; SANGERMANO, F. ; KENDELL, D. ; LIVDAHL, T.</creatorcontrib><description>The present work evaluates the use of species distribution model (SDM) algorithms to classify high densities of small container‐breeding Aedes mosquitoes (Diptera: Culicidae) on a fine scale in the Bermuda Islands. Weekly ovitrap data collected by the Department of Health, Bermuda for the years 2006 and 2007 were used for the models. The models evaluated included the algorithms Bioclim, Domain, GARP (genetic algorithm for rule‐set prediction), logistic regression and MaxEnt (maximum entropy). Models were evaluated according to performance and robustness. The area under the receiver operating characteristic curve was used to evaluate each model's performance, and robustness was assessed according to the spatial correlation between classification risks for the two datasets. Relative to the other algorithms, logistic regression was the best and MaxEnt the second best model for classifying high‐risk areas. We describe the importance of covariables for these two models and discuss the utility of SDMs in vector control efforts and the potential for the development of scripts that automate the task of creating risk assessment maps.</description><identifier>ISSN: 0269-283X</identifier><identifier>EISSN: 1365-2915</identifier><identifier>DOI: 10.1111/j.1365-2915.2010.00935.x</identifier><identifier>PMID: 21198711</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aedes ; Algorithms ; Animals ; Bermuda Islands ; Culicidae ; Culicidae - classification ; Culicidae - physiology ; Demography ; Diptera ; Logistic Models ; Models, Biological ; Risk assessment ; risk prediction ; SDMs ; species distribution models ; Species Specificity ; Time Factors</subject><ispartof>Medical and veterinary entomology, 2011-09, Vol.25 (3), p.268-275</ispartof><rights>2010 The Authors. Medical and Veterinary Entomology © 2010 The Royal Entomological Society</rights><rights>2010 The Authors. Medical and Veterinary Entomology © 2010 The Royal Entomological Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5705-77c6915eda244597fe2899fe28263f0d30ee47d0ec52042a50b66a41edea240b3</citedby><cites>FETCH-LOGICAL-c5705-77c6915eda244597fe2899fe28263f0d30ee47d0ec52042a50b66a41edea240b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2915.2010.00935.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2915.2010.00935.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21198711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KHATCHIKIAN, C.</creatorcontrib><creatorcontrib>SANGERMANO, F.</creatorcontrib><creatorcontrib>KENDELL, D.</creatorcontrib><creatorcontrib>LIVDAHL, T.</creatorcontrib><title>Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction</title><title>Medical and veterinary entomology</title><addtitle>Med Vet Entomol</addtitle><description>The present work evaluates the use of species distribution model (SDM) algorithms to classify high densities of small container‐breeding Aedes mosquitoes (Diptera: Culicidae) on a fine scale in the Bermuda Islands. Weekly ovitrap data collected by the Department of Health, Bermuda for the years 2006 and 2007 were used for the models. The models evaluated included the algorithms Bioclim, Domain, GARP (genetic algorithm for rule‐set prediction), logistic regression and MaxEnt (maximum entropy). Models were evaluated according to performance and robustness. The area under the receiver operating characteristic curve was used to evaluate each model's performance, and robustness was assessed according to the spatial correlation between classification risks for the two datasets. Relative to the other algorithms, logistic regression was the best and MaxEnt the second best model for classifying high‐risk areas. We describe the importance of covariables for these two models and discuss the utility of SDMs in vector control efforts and the potential for the development of scripts that automate the task of creating risk assessment maps.</description><subject>Aedes</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bermuda Islands</subject><subject>Culicidae</subject><subject>Culicidae - classification</subject><subject>Culicidae - physiology</subject><subject>Demography</subject><subject>Diptera</subject><subject>Logistic Models</subject><subject>Models, Biological</subject><subject>Risk assessment</subject><subject>risk prediction</subject><subject>SDMs</subject><subject>species distribution models</subject><subject>Species Specificity</subject><subject>Time Factors</subject><issn>0269-283X</issn><issn>1365-2915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQtRCILgt_AVniwCmLP-I4lhASardbpAIXoL1ZjjPZepvEWzsp239fp1tWwAV8sMcz7z155hkhTMmCpvVus6C8EBlTVCwYSVlCFBeL3RM0OxSeohlhhcpYyS-P0IsYN4RQqRh7jo4YpaqUlM5Qv7w17WgG53vsGxy3YB1EXLs4BFeND_nO19Bi0659cMNVF3HjA25cD1m0pgVsfT-YdA1ZFQBq168TJd6MbvA4uHiNtyFl7aT1Ej1rTBvh1eM5R99Pl9-Oz7Lzr6tPxx_PMyskEZmUtkgtQG1YngslG2ClUtPOCt6QmhOAXNYErGAkZ0aQqihMTqGGxCAVn6MPe93tWHVQW-iHYFq9Da4z4U574_Sfld5d6bW_1ZxyIdPI5ujto0DwNyPEQXcuWmhb04Mfo1aEcVGSXP4TWZY0l6TkPCHf_IXc-DH0aQ6ailwkT2QuEqrco2zwMQZoDq-mRE_u642eTNaTyXpyXz-4r3eJ-vr3rg_EX3YnwPs94Kdr4e6_hfXnH8sUJHq2p6ffAbsD3YRrXUguhb74stKXJ2RFLrjSp_we0JTPHw</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>KHATCHIKIAN, C.</creator><creator>SANGERMANO, F.</creator><creator>KENDELL, D.</creator><creator>LIVDAHL, T.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>201109</creationdate><title>Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction</title><author>KHATCHIKIAN, C. ; SANGERMANO, F. ; KENDELL, D. ; LIVDAHL, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5705-77c6915eda244597fe2899fe28263f0d30ee47d0ec52042a50b66a41edea240b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aedes</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bermuda Islands</topic><topic>Culicidae</topic><topic>Culicidae - classification</topic><topic>Culicidae - physiology</topic><topic>Demography</topic><topic>Diptera</topic><topic>Logistic Models</topic><topic>Models, Biological</topic><topic>Risk assessment</topic><topic>risk prediction</topic><topic>SDMs</topic><topic>species distribution models</topic><topic>Species Specificity</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KHATCHIKIAN, C.</creatorcontrib><creatorcontrib>SANGERMANO, F.</creatorcontrib><creatorcontrib>KENDELL, D.</creatorcontrib><creatorcontrib>LIVDAHL, T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical and veterinary entomology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KHATCHIKIAN, C.</au><au>SANGERMANO, F.</au><au>KENDELL, D.</au><au>LIVDAHL, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction</atitle><jtitle>Medical and veterinary entomology</jtitle><addtitle>Med Vet Entomol</addtitle><date>2011-09</date><risdate>2011</risdate><volume>25</volume><issue>3</issue><spage>268</spage><epage>275</epage><pages>268-275</pages><issn>0269-283X</issn><eissn>1365-2915</eissn><abstract>The present work evaluates the use of species distribution model (SDM) algorithms to classify high densities of small container‐breeding Aedes mosquitoes (Diptera: Culicidae) on a fine scale in the Bermuda Islands. Weekly ovitrap data collected by the Department of Health, Bermuda for the years 2006 and 2007 were used for the models. The models evaluated included the algorithms Bioclim, Domain, GARP (genetic algorithm for rule‐set prediction), logistic regression and MaxEnt (maximum entropy). Models were evaluated according to performance and robustness. The area under the receiver operating characteristic curve was used to evaluate each model's performance, and robustness was assessed according to the spatial correlation between classification risks for the two datasets. Relative to the other algorithms, logistic regression was the best and MaxEnt the second best model for classifying high‐risk areas. We describe the importance of covariables for these two models and discuss the utility of SDMs in vector control efforts and the potential for the development of scripts that automate the task of creating risk assessment maps.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21198711</pmid><doi>10.1111/j.1365-2915.2010.00935.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-283X |
ispartof | Medical and veterinary entomology, 2011-09, Vol.25 (3), p.268-275 |
issn | 0269-283X 1365-2915 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3135728 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Aedes Algorithms Animals Bermuda Islands Culicidae Culicidae - classification Culicidae - physiology Demography Diptera Logistic Models Models, Biological Risk assessment risk prediction SDMs species distribution models Species Specificity Time Factors |
title | Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20species%20distribution%20model%20algorithms%20for%20fine-scale%20container-breeding%20mosquito%20risk%20prediction&rft.jtitle=Medical%20and%20veterinary%20entomology&rft.au=KHATCHIKIAN,%20C.&rft.date=2011-09&rft.volume=25&rft.issue=3&rft.spage=268&rft.epage=275&rft.pages=268-275&rft.issn=0269-283X&rft.eissn=1365-2915&rft_id=info:doi/10.1111/j.1365-2915.2010.00935.x&rft_dat=%3Cproquest_pubme%3E881470833%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545119745&rft_id=info:pmid/21198711&rfr_iscdi=true |