Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction

The present work evaluates the use of species distribution model (SDM) algorithms to classify high densities of small container‐breeding Aedes mosquitoes (Diptera: Culicidae) on a fine scale in the Bermuda Islands. Weekly ovitrap data collected by the Department of Health, Bermuda for the years 2006...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical and veterinary entomology 2011-09, Vol.25 (3), p.268-275
Hauptverfasser: KHATCHIKIAN, C., SANGERMANO, F., KENDELL, D., LIVDAHL, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 3
container_start_page 268
container_title Medical and veterinary entomology
container_volume 25
creator KHATCHIKIAN, C.
SANGERMANO, F.
KENDELL, D.
LIVDAHL, T.
description The present work evaluates the use of species distribution model (SDM) algorithms to classify high densities of small container‐breeding Aedes mosquitoes (Diptera: Culicidae) on a fine scale in the Bermuda Islands. Weekly ovitrap data collected by the Department of Health, Bermuda for the years 2006 and 2007 were used for the models. The models evaluated included the algorithms Bioclim, Domain, GARP (genetic algorithm for rule‐set prediction), logistic regression and MaxEnt (maximum entropy). Models were evaluated according to performance and robustness. The area under the receiver operating characteristic curve was used to evaluate each model's performance, and robustness was assessed according to the spatial correlation between classification risks for the two datasets. Relative to the other algorithms, logistic regression was the best and MaxEnt the second best model for classifying high‐risk areas. We describe the importance of covariables for these two models and discuss the utility of SDMs in vector control efforts and the potential for the development of scripts that automate the task of creating risk assessment maps.
doi_str_mv 10.1111/j.1365-2915.2010.00935.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3135728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>881470833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5705-77c6915eda244597fe2899fe28263f0d30ee47d0ec52042a50b66a41edea240b3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRCILgt_AVniwCmLP-I4lhASardbpAIXoL1ZjjPZepvEWzsp239fp1tWwAV8sMcz7z155hkhTMmCpvVus6C8EBlTVCwYSVlCFBeL3RM0OxSeohlhhcpYyS-P0IsYN4RQqRh7jo4YpaqUlM5Qv7w17WgG53vsGxy3YB1EXLs4BFeND_nO19Bi0659cMNVF3HjA25cD1m0pgVsfT-YdA1ZFQBq168TJd6MbvA4uHiNtyFl7aT1Ej1rTBvh1eM5R99Pl9-Oz7Lzr6tPxx_PMyskEZmUtkgtQG1YngslG2ClUtPOCt6QmhOAXNYErGAkZ0aQqihMTqGGxCAVn6MPe93tWHVQW-iHYFq9Da4z4U574_Sfld5d6bW_1ZxyIdPI5ujto0DwNyPEQXcuWmhb04Mfo1aEcVGSXP4TWZY0l6TkPCHf_IXc-DH0aQ6ailwkT2QuEqrco2zwMQZoDq-mRE_u642eTNaTyXpyXz-4r3eJ-vr3rg_EX3YnwPs94Kdr4e6_hfXnH8sUJHq2p6ffAbsD3YRrXUguhb74stKXJ2RFLrjSp_we0JTPHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545119745</pqid></control><display><type>article</type><title>Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>KHATCHIKIAN, C. ; SANGERMANO, F. ; KENDELL, D. ; LIVDAHL, T.</creator><creatorcontrib>KHATCHIKIAN, C. ; SANGERMANO, F. ; KENDELL, D. ; LIVDAHL, T.</creatorcontrib><description>The present work evaluates the use of species distribution model (SDM) algorithms to classify high densities of small container‐breeding Aedes mosquitoes (Diptera: Culicidae) on a fine scale in the Bermuda Islands. Weekly ovitrap data collected by the Department of Health, Bermuda for the years 2006 and 2007 were used for the models. The models evaluated included the algorithms Bioclim, Domain, GARP (genetic algorithm for rule‐set prediction), logistic regression and MaxEnt (maximum entropy). Models were evaluated according to performance and robustness. The area under the receiver operating characteristic curve was used to evaluate each model's performance, and robustness was assessed according to the spatial correlation between classification risks for the two datasets. Relative to the other algorithms, logistic regression was the best and MaxEnt the second best model for classifying high‐risk areas. We describe the importance of covariables for these two models and discuss the utility of SDMs in vector control efforts and the potential for the development of scripts that automate the task of creating risk assessment maps.</description><identifier>ISSN: 0269-283X</identifier><identifier>EISSN: 1365-2915</identifier><identifier>DOI: 10.1111/j.1365-2915.2010.00935.x</identifier><identifier>PMID: 21198711</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aedes ; Algorithms ; Animals ; Bermuda Islands ; Culicidae ; Culicidae - classification ; Culicidae - physiology ; Demography ; Diptera ; Logistic Models ; Models, Biological ; Risk assessment ; risk prediction ; SDMs ; species distribution models ; Species Specificity ; Time Factors</subject><ispartof>Medical and veterinary entomology, 2011-09, Vol.25 (3), p.268-275</ispartof><rights>2010 The Authors. Medical and Veterinary Entomology © 2010 The Royal Entomological Society</rights><rights>2010 The Authors. Medical and Veterinary Entomology © 2010 The Royal Entomological Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5705-77c6915eda244597fe2899fe28263f0d30ee47d0ec52042a50b66a41edea240b3</citedby><cites>FETCH-LOGICAL-c5705-77c6915eda244597fe2899fe28263f0d30ee47d0ec52042a50b66a41edea240b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2915.2010.00935.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2915.2010.00935.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21198711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KHATCHIKIAN, C.</creatorcontrib><creatorcontrib>SANGERMANO, F.</creatorcontrib><creatorcontrib>KENDELL, D.</creatorcontrib><creatorcontrib>LIVDAHL, T.</creatorcontrib><title>Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction</title><title>Medical and veterinary entomology</title><addtitle>Med Vet Entomol</addtitle><description>The present work evaluates the use of species distribution model (SDM) algorithms to classify high densities of small container‐breeding Aedes mosquitoes (Diptera: Culicidae) on a fine scale in the Bermuda Islands. Weekly ovitrap data collected by the Department of Health, Bermuda for the years 2006 and 2007 were used for the models. The models evaluated included the algorithms Bioclim, Domain, GARP (genetic algorithm for rule‐set prediction), logistic regression and MaxEnt (maximum entropy). Models were evaluated according to performance and robustness. The area under the receiver operating characteristic curve was used to evaluate each model's performance, and robustness was assessed according to the spatial correlation between classification risks for the two datasets. Relative to the other algorithms, logistic regression was the best and MaxEnt the second best model for classifying high‐risk areas. We describe the importance of covariables for these two models and discuss the utility of SDMs in vector control efforts and the potential for the development of scripts that automate the task of creating risk assessment maps.</description><subject>Aedes</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bermuda Islands</subject><subject>Culicidae</subject><subject>Culicidae - classification</subject><subject>Culicidae - physiology</subject><subject>Demography</subject><subject>Diptera</subject><subject>Logistic Models</subject><subject>Models, Biological</subject><subject>Risk assessment</subject><subject>risk prediction</subject><subject>SDMs</subject><subject>species distribution models</subject><subject>Species Specificity</subject><subject>Time Factors</subject><issn>0269-283X</issn><issn>1365-2915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQtRCILgt_AVniwCmLP-I4lhASardbpAIXoL1ZjjPZepvEWzsp239fp1tWwAV8sMcz7z155hkhTMmCpvVus6C8EBlTVCwYSVlCFBeL3RM0OxSeohlhhcpYyS-P0IsYN4RQqRh7jo4YpaqUlM5Qv7w17WgG53vsGxy3YB1EXLs4BFeND_nO19Bi0659cMNVF3HjA25cD1m0pgVsfT-YdA1ZFQBq168TJd6MbvA4uHiNtyFl7aT1Ej1rTBvh1eM5R99Pl9-Oz7Lzr6tPxx_PMyskEZmUtkgtQG1YngslG2ClUtPOCt6QmhOAXNYErGAkZ0aQqihMTqGGxCAVn6MPe93tWHVQW-iHYFq9Da4z4U574_Sfld5d6bW_1ZxyIdPI5ujto0DwNyPEQXcuWmhb04Mfo1aEcVGSXP4TWZY0l6TkPCHf_IXc-DH0aQ6ailwkT2QuEqrco2zwMQZoDq-mRE_u642eTNaTyXpyXz-4r3eJ-vr3rg_EX3YnwPs94Kdr4e6_hfXnH8sUJHq2p6ffAbsD3YRrXUguhb74stKXJ2RFLrjSp_we0JTPHw</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>KHATCHIKIAN, C.</creator><creator>SANGERMANO, F.</creator><creator>KENDELL, D.</creator><creator>LIVDAHL, T.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>201109</creationdate><title>Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction</title><author>KHATCHIKIAN, C. ; SANGERMANO, F. ; KENDELL, D. ; LIVDAHL, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5705-77c6915eda244597fe2899fe28263f0d30ee47d0ec52042a50b66a41edea240b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aedes</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bermuda Islands</topic><topic>Culicidae</topic><topic>Culicidae - classification</topic><topic>Culicidae - physiology</topic><topic>Demography</topic><topic>Diptera</topic><topic>Logistic Models</topic><topic>Models, Biological</topic><topic>Risk assessment</topic><topic>risk prediction</topic><topic>SDMs</topic><topic>species distribution models</topic><topic>Species Specificity</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KHATCHIKIAN, C.</creatorcontrib><creatorcontrib>SANGERMANO, F.</creatorcontrib><creatorcontrib>KENDELL, D.</creatorcontrib><creatorcontrib>LIVDAHL, T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical and veterinary entomology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KHATCHIKIAN, C.</au><au>SANGERMANO, F.</au><au>KENDELL, D.</au><au>LIVDAHL, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction</atitle><jtitle>Medical and veterinary entomology</jtitle><addtitle>Med Vet Entomol</addtitle><date>2011-09</date><risdate>2011</risdate><volume>25</volume><issue>3</issue><spage>268</spage><epage>275</epage><pages>268-275</pages><issn>0269-283X</issn><eissn>1365-2915</eissn><abstract>The present work evaluates the use of species distribution model (SDM) algorithms to classify high densities of small container‐breeding Aedes mosquitoes (Diptera: Culicidae) on a fine scale in the Bermuda Islands. Weekly ovitrap data collected by the Department of Health, Bermuda for the years 2006 and 2007 were used for the models. The models evaluated included the algorithms Bioclim, Domain, GARP (genetic algorithm for rule‐set prediction), logistic regression and MaxEnt (maximum entropy). Models were evaluated according to performance and robustness. The area under the receiver operating characteristic curve was used to evaluate each model's performance, and robustness was assessed according to the spatial correlation between classification risks for the two datasets. Relative to the other algorithms, logistic regression was the best and MaxEnt the second best model for classifying high‐risk areas. We describe the importance of covariables for these two models and discuss the utility of SDMs in vector control efforts and the potential for the development of scripts that automate the task of creating risk assessment maps.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21198711</pmid><doi>10.1111/j.1365-2915.2010.00935.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-283X
ispartof Medical and veterinary entomology, 2011-09, Vol.25 (3), p.268-275
issn 0269-283X
1365-2915
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3135728
source MEDLINE; Access via Wiley Online Library
subjects Aedes
Algorithms
Animals
Bermuda Islands
Culicidae
Culicidae - classification
Culicidae - physiology
Demography
Diptera
Logistic Models
Models, Biological
Risk assessment
risk prediction
SDMs
species distribution models
Species Specificity
Time Factors
title Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20species%20distribution%20model%20algorithms%20for%20fine-scale%20container-breeding%20mosquito%20risk%20prediction&rft.jtitle=Medical%20and%20veterinary%20entomology&rft.au=KHATCHIKIAN,%20C.&rft.date=2011-09&rft.volume=25&rft.issue=3&rft.spage=268&rft.epage=275&rft.pages=268-275&rft.issn=0269-283X&rft.eissn=1365-2915&rft_id=info:doi/10.1111/j.1365-2915.2010.00935.x&rft_dat=%3Cproquest_pubme%3E881470833%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545119745&rft_id=info:pmid/21198711&rfr_iscdi=true