Analysis of complex metabolic behavior through pathway decomposition
Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elemen...
Gespeichert in:
Veröffentlicht in: | BMC systems biology 2011-06, Vol.5 (93), p.91-91, Article 91 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 93 |
container_start_page | 91 |
container_title | BMC systems biology |
container_volume | 5 |
creator | Ip, Kuhn Colijn, Caroline Lun, Desmond S |
description | Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elementary flux modes provides a systematic way for organizing metabolic networks into such pathways. While decomposition using elementary flux modes has proven to be a powerful tool for understanding and manipulating cellular metabolism, its utility, however, is severely limited since the number of modes in a network increases exponentially with its size.
Here, we present a new method for decomposition of metabolic flux distributions into elementary flux modes. Our method can easily operate on large, genome-scale networks since it does not require all relevant modes of the metabolic network to be generated. We illustrate the utility of our method for metabolic engineering of Escherichia coli and for understanding the survival of Mycobacterium tuberculosis (MTB) during infection.
Our method can achieve computational time improvements exceeding 2000-fold and requires only several seconds to generate elementary mode decompositions on genome-scale networks. These improvements arise from not having to generate all relevant elementary modes prior to initiating the decomposition. The decompositions from our method are useful for understanding complex flux distributions and debugging genome-scale models. |
doi_str_mv | 10.1186/1752-0509-5-91 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3135541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A441927665</galeid><sourcerecordid>A441927665</sourcerecordid><originalsourceid>FETCH-LOGICAL-b715t-8b898021cade691045b311086a4cee176047fd0867e379c04eda6dcca4a568283</originalsourceid><addsrcrecordid>eNqNkstv1DAQxiMEoqVw5YgicUAcUvx-XJBWLY9KlZCgPVuOM9kYJfESO6X73zfRltVGlMfJ9szPn2c-T5a9xOgUYyXeYclJgTjSBS80fpQd7wOPD_ZH2bMYvyPEKSHyaXZEsKBaKX2cna96226jj3mocxe6TQu3eQfJlqH1Li-hsTc-DHlqhjCum3xjU_PTbvMKZjhEn3zon2dPattGeHG_nmTXHz9cnX0uLr98ujhbXRalxDwVqlRaIYKdrUBojBgvKcZICcscAJYCMVlX01kCldohBpUVlXOWWS4UUfQke7_T3YxlB5WDPg22NZvBd3bYmmC9WWZ635h1uDEUU84ZngRWO4HShz8ILDNTk2Z20cwuGm70rPHmvogh_BghJtP56KBtbQ9hjEZJyaYekJ7I1ztybVswvq_DpOlm2qwYw5pIIfhfKSIwEVrSmTp9gLKzlZ13oYfaT_GF7H9dOHzh7eLCxCS4TWs7xmguvn1div-LfaByN4QYB6j3dmNk5hn-3eBXh7-8x38NLb0DzFbpQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>877408609</pqid></control><display><type>article</type><title>Analysis of complex metabolic behavior through pathway decomposition</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>BioMed Central Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Ip, Kuhn ; Colijn, Caroline ; Lun, Desmond S</creator><creatorcontrib>Ip, Kuhn ; Colijn, Caroline ; Lun, Desmond S</creatorcontrib><description>Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elementary flux modes provides a systematic way for organizing metabolic networks into such pathways. While decomposition using elementary flux modes has proven to be a powerful tool for understanding and manipulating cellular metabolism, its utility, however, is severely limited since the number of modes in a network increases exponentially with its size.
Here, we present a new method for decomposition of metabolic flux distributions into elementary flux modes. Our method can easily operate on large, genome-scale networks since it does not require all relevant modes of the metabolic network to be generated. We illustrate the utility of our method for metabolic engineering of Escherichia coli and for understanding the survival of Mycobacterium tuberculosis (MTB) during infection.
Our method can achieve computational time improvements exceeding 2000-fold and requires only several seconds to generate elementary mode decompositions on genome-scale networks. These improvements arise from not having to generate all relevant elementary modes prior to initiating the decomposition. The decompositions from our method are useful for understanding complex flux distributions and debugging genome-scale models.</description><identifier>ISSN: 1752-0509</identifier><identifier>EISSN: 1752-0509</identifier><identifier>DOI: 10.1186/1752-0509-5-91</identifier><identifier>PMID: 21639889</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acetates - metabolism ; Analysis ; Computational Biology - methods ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Knockout Techniques ; Genetic Engineering ; Genomics ; Health aspects ; Metabolic Networks and Pathways ; Metabolism ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - metabolism ; Mycobacterium tuberculosis - physiology ; Physiological aspects</subject><ispartof>BMC systems biology, 2011-06, Vol.5 (93), p.91-91, Article 91</ispartof><rights>COPYRIGHT 2011 BioMed Central Ltd.</rights><rights>Copyright ©2011 Ip et al; licensee BioMed Central Ltd. 2011 Ip et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b715t-8b898021cade691045b311086a4cee176047fd0867e379c04eda6dcca4a568283</citedby><cites>FETCH-LOGICAL-b715t-8b898021cade691045b311086a4cee176047fd0867e379c04eda6dcca4a568283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135541/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135541/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,24780,27901,27902,53766,53768,75481,75482</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21639889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ip, Kuhn</creatorcontrib><creatorcontrib>Colijn, Caroline</creatorcontrib><creatorcontrib>Lun, Desmond S</creatorcontrib><title>Analysis of complex metabolic behavior through pathway decomposition</title><title>BMC systems biology</title><addtitle>BMC Syst Biol</addtitle><description>Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elementary flux modes provides a systematic way for organizing metabolic networks into such pathways. While decomposition using elementary flux modes has proven to be a powerful tool for understanding and manipulating cellular metabolism, its utility, however, is severely limited since the number of modes in a network increases exponentially with its size.
Here, we present a new method for decomposition of metabolic flux distributions into elementary flux modes. Our method can easily operate on large, genome-scale networks since it does not require all relevant modes of the metabolic network to be generated. We illustrate the utility of our method for metabolic engineering of Escherichia coli and for understanding the survival of Mycobacterium tuberculosis (MTB) during infection.
Our method can achieve computational time improvements exceeding 2000-fold and requires only several seconds to generate elementary mode decompositions on genome-scale networks. These improvements arise from not having to generate all relevant elementary modes prior to initiating the decomposition. The decompositions from our method are useful for understanding complex flux distributions and debugging genome-scale models.</description><subject>Acetates - metabolism</subject><subject>Analysis</subject><subject>Computational Biology - methods</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Knockout Techniques</subject><subject>Genetic Engineering</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Mycobacterium tuberculosis - physiology</subject><subject>Physiological aspects</subject><issn>1752-0509</issn><issn>1752-0509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkstv1DAQxiMEoqVw5YgicUAcUvx-XJBWLY9KlZCgPVuOM9kYJfESO6X73zfRltVGlMfJ9szPn2c-T5a9xOgUYyXeYclJgTjSBS80fpQd7wOPD_ZH2bMYvyPEKSHyaXZEsKBaKX2cna96226jj3mocxe6TQu3eQfJlqH1Li-hsTc-DHlqhjCum3xjU_PTbvMKZjhEn3zon2dPattGeHG_nmTXHz9cnX0uLr98ujhbXRalxDwVqlRaIYKdrUBojBgvKcZICcscAJYCMVlX01kCldohBpUVlXOWWS4UUfQke7_T3YxlB5WDPg22NZvBd3bYmmC9WWZ635h1uDEUU84ZngRWO4HShz8ILDNTk2Z20cwuGm70rPHmvogh_BghJtP56KBtbQ9hjEZJyaYekJ7I1ztybVswvq_DpOlm2qwYw5pIIfhfKSIwEVrSmTp9gLKzlZ13oYfaT_GF7H9dOHzh7eLCxCS4TWs7xmguvn1div-LfaByN4QYB6j3dmNk5hn-3eBXh7-8x38NLb0DzFbpQg</recordid><startdate>20110603</startdate><enddate>20110603</enddate><creator>Ip, Kuhn</creator><creator>Colijn, Caroline</creator><creator>Lun, Desmond S</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110603</creationdate><title>Analysis of complex metabolic behavior through pathway decomposition</title><author>Ip, Kuhn ; Colijn, Caroline ; Lun, Desmond S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b715t-8b898021cade691045b311086a4cee176047fd0867e379c04eda6dcca4a568283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetates - metabolism</topic><topic>Analysis</topic><topic>Computational Biology - methods</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Knockout Techniques</topic><topic>Genetic Engineering</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Mycobacterium tuberculosis - physiology</topic><topic>Physiological aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ip, Kuhn</creatorcontrib><creatorcontrib>Colijn, Caroline</creatorcontrib><creatorcontrib>Lun, Desmond S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ip, Kuhn</au><au>Colijn, Caroline</au><au>Lun, Desmond S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of complex metabolic behavior through pathway decomposition</atitle><jtitle>BMC systems biology</jtitle><addtitle>BMC Syst Biol</addtitle><date>2011-06-03</date><risdate>2011</risdate><volume>5</volume><issue>93</issue><spage>91</spage><epage>91</epage><pages>91-91</pages><artnum>91</artnum><issn>1752-0509</issn><eissn>1752-0509</eissn><abstract>Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elementary flux modes provides a systematic way for organizing metabolic networks into such pathways. While decomposition using elementary flux modes has proven to be a powerful tool for understanding and manipulating cellular metabolism, its utility, however, is severely limited since the number of modes in a network increases exponentially with its size.
Here, we present a new method for decomposition of metabolic flux distributions into elementary flux modes. Our method can easily operate on large, genome-scale networks since it does not require all relevant modes of the metabolic network to be generated. We illustrate the utility of our method for metabolic engineering of Escherichia coli and for understanding the survival of Mycobacterium tuberculosis (MTB) during infection.
Our method can achieve computational time improvements exceeding 2000-fold and requires only several seconds to generate elementary mode decompositions on genome-scale networks. These improvements arise from not having to generate all relevant elementary modes prior to initiating the decomposition. The decompositions from our method are useful for understanding complex flux distributions and debugging genome-scale models.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>21639889</pmid><doi>10.1186/1752-0509-5-91</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0509 |
ispartof | BMC systems biology, 2011-06, Vol.5 (93), p.91-91, Article 91 |
issn | 1752-0509 1752-0509 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3135541 |
source | MEDLINE; PMC (PubMed Central); BioMed Central Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | Acetates - metabolism Analysis Computational Biology - methods Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Gene Knockout Techniques Genetic Engineering Genomics Health aspects Metabolic Networks and Pathways Metabolism Mycobacterium tuberculosis Mycobacterium tuberculosis - metabolism Mycobacterium tuberculosis - physiology Physiological aspects |
title | Analysis of complex metabolic behavior through pathway decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20complex%20metabolic%20behavior%20through%20pathway%20decomposition&rft.jtitle=BMC%20systems%20biology&rft.au=Ip,%20Kuhn&rft.date=2011-06-03&rft.volume=5&rft.issue=93&rft.spage=91&rft.epage=91&rft.pages=91-91&rft.artnum=91&rft.issn=1752-0509&rft.eissn=1752-0509&rft_id=info:doi/10.1186/1752-0509-5-91&rft_dat=%3Cgale_pubme%3EA441927665%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=877408609&rft_id=info:pmid/21639889&rft_galeid=A441927665&rfr_iscdi=true |