Analysis of complex metabolic behavior through pathway decomposition

Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC systems biology 2011-06, Vol.5 (93), p.91-91, Article 91
Hauptverfasser: Ip, Kuhn, Colijn, Caroline, Lun, Desmond S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 93
container_start_page 91
container_title BMC systems biology
container_volume 5
creator Ip, Kuhn
Colijn, Caroline
Lun, Desmond S
description Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elementary flux modes provides a systematic way for organizing metabolic networks into such pathways. While decomposition using elementary flux modes has proven to be a powerful tool for understanding and manipulating cellular metabolism, its utility, however, is severely limited since the number of modes in a network increases exponentially with its size. Here, we present a new method for decomposition of metabolic flux distributions into elementary flux modes. Our method can easily operate on large, genome-scale networks since it does not require all relevant modes of the metabolic network to be generated. We illustrate the utility of our method for metabolic engineering of Escherichia coli and for understanding the survival of Mycobacterium tuberculosis (MTB) during infection. Our method can achieve computational time improvements exceeding 2000-fold and requires only several seconds to generate elementary mode decompositions on genome-scale networks. These improvements arise from not having to generate all relevant elementary modes prior to initiating the decomposition. The decompositions from our method are useful for understanding complex flux distributions and debugging genome-scale models.
doi_str_mv 10.1186/1752-0509-5-91
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3135541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A441927665</galeid><sourcerecordid>A441927665</sourcerecordid><originalsourceid>FETCH-LOGICAL-b715t-8b898021cade691045b311086a4cee176047fd0867e379c04eda6dcca4a568283</originalsourceid><addsrcrecordid>eNqNkstv1DAQxiMEoqVw5YgicUAcUvx-XJBWLY9KlZCgPVuOM9kYJfESO6X73zfRltVGlMfJ9szPn2c-T5a9xOgUYyXeYclJgTjSBS80fpQd7wOPD_ZH2bMYvyPEKSHyaXZEsKBaKX2cna96226jj3mocxe6TQu3eQfJlqH1Li-hsTc-DHlqhjCum3xjU_PTbvMKZjhEn3zon2dPattGeHG_nmTXHz9cnX0uLr98ujhbXRalxDwVqlRaIYKdrUBojBgvKcZICcscAJYCMVlX01kCldohBpUVlXOWWS4UUfQke7_T3YxlB5WDPg22NZvBd3bYmmC9WWZ635h1uDEUU84ZngRWO4HShz8ILDNTk2Z20cwuGm70rPHmvogh_BghJtP56KBtbQ9hjEZJyaYekJ7I1ztybVswvq_DpOlm2qwYw5pIIfhfKSIwEVrSmTp9gLKzlZ13oYfaT_GF7H9dOHzh7eLCxCS4TWs7xmguvn1div-LfaByN4QYB6j3dmNk5hn-3eBXh7-8x38NLb0DzFbpQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>877408609</pqid></control><display><type>article</type><title>Analysis of complex metabolic behavior through pathway decomposition</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>BioMed Central Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Ip, Kuhn ; Colijn, Caroline ; Lun, Desmond S</creator><creatorcontrib>Ip, Kuhn ; Colijn, Caroline ; Lun, Desmond S</creatorcontrib><description>Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elementary flux modes provides a systematic way for organizing metabolic networks into such pathways. While decomposition using elementary flux modes has proven to be a powerful tool for understanding and manipulating cellular metabolism, its utility, however, is severely limited since the number of modes in a network increases exponentially with its size. Here, we present a new method for decomposition of metabolic flux distributions into elementary flux modes. Our method can easily operate on large, genome-scale networks since it does not require all relevant modes of the metabolic network to be generated. We illustrate the utility of our method for metabolic engineering of Escherichia coli and for understanding the survival of Mycobacterium tuberculosis (MTB) during infection. Our method can achieve computational time improvements exceeding 2000-fold and requires only several seconds to generate elementary mode decompositions on genome-scale networks. These improvements arise from not having to generate all relevant elementary modes prior to initiating the decomposition. The decompositions from our method are useful for understanding complex flux distributions and debugging genome-scale models.</description><identifier>ISSN: 1752-0509</identifier><identifier>EISSN: 1752-0509</identifier><identifier>DOI: 10.1186/1752-0509-5-91</identifier><identifier>PMID: 21639889</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acetates - metabolism ; Analysis ; Computational Biology - methods ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Knockout Techniques ; Genetic Engineering ; Genomics ; Health aspects ; Metabolic Networks and Pathways ; Metabolism ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - metabolism ; Mycobacterium tuberculosis - physiology ; Physiological aspects</subject><ispartof>BMC systems biology, 2011-06, Vol.5 (93), p.91-91, Article 91</ispartof><rights>COPYRIGHT 2011 BioMed Central Ltd.</rights><rights>Copyright ©2011 Ip et al; licensee BioMed Central Ltd. 2011 Ip et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b715t-8b898021cade691045b311086a4cee176047fd0867e379c04eda6dcca4a568283</citedby><cites>FETCH-LOGICAL-b715t-8b898021cade691045b311086a4cee176047fd0867e379c04eda6dcca4a568283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135541/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135541/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,24780,27901,27902,53766,53768,75481,75482</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21639889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ip, Kuhn</creatorcontrib><creatorcontrib>Colijn, Caroline</creatorcontrib><creatorcontrib>Lun, Desmond S</creatorcontrib><title>Analysis of complex metabolic behavior through pathway decomposition</title><title>BMC systems biology</title><addtitle>BMC Syst Biol</addtitle><description>Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elementary flux modes provides a systematic way for organizing metabolic networks into such pathways. While decomposition using elementary flux modes has proven to be a powerful tool for understanding and manipulating cellular metabolism, its utility, however, is severely limited since the number of modes in a network increases exponentially with its size. Here, we present a new method for decomposition of metabolic flux distributions into elementary flux modes. Our method can easily operate on large, genome-scale networks since it does not require all relevant modes of the metabolic network to be generated. We illustrate the utility of our method for metabolic engineering of Escherichia coli and for understanding the survival of Mycobacterium tuberculosis (MTB) during infection. Our method can achieve computational time improvements exceeding 2000-fold and requires only several seconds to generate elementary mode decompositions on genome-scale networks. These improvements arise from not having to generate all relevant elementary modes prior to initiating the decomposition. The decompositions from our method are useful for understanding complex flux distributions and debugging genome-scale models.</description><subject>Acetates - metabolism</subject><subject>Analysis</subject><subject>Computational Biology - methods</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Knockout Techniques</subject><subject>Genetic Engineering</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Mycobacterium tuberculosis - physiology</subject><subject>Physiological aspects</subject><issn>1752-0509</issn><issn>1752-0509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkstv1DAQxiMEoqVw5YgicUAcUvx-XJBWLY9KlZCgPVuOM9kYJfESO6X73zfRltVGlMfJ9szPn2c-T5a9xOgUYyXeYclJgTjSBS80fpQd7wOPD_ZH2bMYvyPEKSHyaXZEsKBaKX2cna96226jj3mocxe6TQu3eQfJlqH1Li-hsTc-DHlqhjCum3xjU_PTbvMKZjhEn3zon2dPattGeHG_nmTXHz9cnX0uLr98ujhbXRalxDwVqlRaIYKdrUBojBgvKcZICcscAJYCMVlX01kCldohBpUVlXOWWS4UUfQke7_T3YxlB5WDPg22NZvBd3bYmmC9WWZ635h1uDEUU84ZngRWO4HShz8ILDNTk2Z20cwuGm70rPHmvogh_BghJtP56KBtbQ9hjEZJyaYekJ7I1ztybVswvq_DpOlm2qwYw5pIIfhfKSIwEVrSmTp9gLKzlZ13oYfaT_GF7H9dOHzh7eLCxCS4TWs7xmguvn1div-LfaByN4QYB6j3dmNk5hn-3eBXh7-8x38NLb0DzFbpQg</recordid><startdate>20110603</startdate><enddate>20110603</enddate><creator>Ip, Kuhn</creator><creator>Colijn, Caroline</creator><creator>Lun, Desmond S</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110603</creationdate><title>Analysis of complex metabolic behavior through pathway decomposition</title><author>Ip, Kuhn ; Colijn, Caroline ; Lun, Desmond S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b715t-8b898021cade691045b311086a4cee176047fd0867e379c04eda6dcca4a568283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetates - metabolism</topic><topic>Analysis</topic><topic>Computational Biology - methods</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Knockout Techniques</topic><topic>Genetic Engineering</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Mycobacterium tuberculosis - physiology</topic><topic>Physiological aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ip, Kuhn</creatorcontrib><creatorcontrib>Colijn, Caroline</creatorcontrib><creatorcontrib>Lun, Desmond S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ip, Kuhn</au><au>Colijn, Caroline</au><au>Lun, Desmond S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of complex metabolic behavior through pathway decomposition</atitle><jtitle>BMC systems biology</jtitle><addtitle>BMC Syst Biol</addtitle><date>2011-06-03</date><risdate>2011</risdate><volume>5</volume><issue>93</issue><spage>91</spage><epage>91</epage><pages>91-91</pages><artnum>91</artnum><issn>1752-0509</issn><eissn>1752-0509</eissn><abstract>Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elementary flux modes provides a systematic way for organizing metabolic networks into such pathways. While decomposition using elementary flux modes has proven to be a powerful tool for understanding and manipulating cellular metabolism, its utility, however, is severely limited since the number of modes in a network increases exponentially with its size. Here, we present a new method for decomposition of metabolic flux distributions into elementary flux modes. Our method can easily operate on large, genome-scale networks since it does not require all relevant modes of the metabolic network to be generated. We illustrate the utility of our method for metabolic engineering of Escherichia coli and for understanding the survival of Mycobacterium tuberculosis (MTB) during infection. Our method can achieve computational time improvements exceeding 2000-fold and requires only several seconds to generate elementary mode decompositions on genome-scale networks. These improvements arise from not having to generate all relevant elementary modes prior to initiating the decomposition. The decompositions from our method are useful for understanding complex flux distributions and debugging genome-scale models.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>21639889</pmid><doi>10.1186/1752-0509-5-91</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-0509
ispartof BMC systems biology, 2011-06, Vol.5 (93), p.91-91, Article 91
issn 1752-0509
1752-0509
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3135541
source MEDLINE; PMC (PubMed Central); BioMed Central Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Acetates - metabolism
Analysis
Computational Biology - methods
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Knockout Techniques
Genetic Engineering
Genomics
Health aspects
Metabolic Networks and Pathways
Metabolism
Mycobacterium tuberculosis
Mycobacterium tuberculosis - metabolism
Mycobacterium tuberculosis - physiology
Physiological aspects
title Analysis of complex metabolic behavior through pathway decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20complex%20metabolic%20behavior%20through%20pathway%20decomposition&rft.jtitle=BMC%20systems%20biology&rft.au=Ip,%20Kuhn&rft.date=2011-06-03&rft.volume=5&rft.issue=93&rft.spage=91&rft.epage=91&rft.pages=91-91&rft.artnum=91&rft.issn=1752-0509&rft.eissn=1752-0509&rft_id=info:doi/10.1186/1752-0509-5-91&rft_dat=%3Cgale_pubme%3EA441927665%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=877408609&rft_id=info:pmid/21639889&rft_galeid=A441927665&rfr_iscdi=true