Enhanced Radiosensitivity of Androgen-Resistant Prostate Cancer: AZD1152-Mediated Aurora Kinase B Inhibition
Aurora kinase B (AURKB) is critical to the process of mitosis, aiding in chromosome condensation by phosphorylating histone H3. We investigated the effects of AZD1152, an AURKB inhibitor, on radiosensitivity of androgen-insensitive prostate cancer cells. The goal of this study was to test whether AZ...
Gespeichert in:
Veröffentlicht in: | Radiation research 2011-04, Vol.175 (4), p.444-451 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aurora kinase B (AURKB) is critical to the process of mitosis, aiding in chromosome condensation by phosphorylating histone H3. We investigated the effects of AZD1152, an AURKB inhibitor, on radiosensitivity of androgen-insensitive prostate cancer cells. The goal of this study was to test whether AZD1152 increases the susceptibility of hormone-refractory prostate cancer cells to radiation-induced DNA damage and to determine the conditions of AZD1152 treatment that maximize radiosensitization. PC3 and DU145 cells were treated with various AZD1152 doses for various durations to elucidate the conditions that yielded maximal increases in G2/M-phase and polyploid cells. To assess DNA damage, γ-H2AX phosphorylation was quantified for cells grown under radiosensitizing conditions and subjected to either no radiation or 5 Gy radiation. Radiosensitivity was determined by clonogenic assays. Cell cycle effects in both cell lines were maximized by treatment with 60 nM AZD1152 for 48 h. AZD1152-treated cells exhibited significantly increased DNA damage 30 min postirradiation (PC3: 100% compared to 68%, P = 0.035; DU145: 100% compared to 69%, P = 0.034), with additional DNA damage 6 h postirradiation (PC3: 85% compared to 15%, P = 0.002; DU145: 67% compared to 21%, P = 0.012). Radiosensitivity was increased in both cell lines, with dose enhancement ratios of 1.53 for PC3 cells (P = 0.017) and 1.71 for DU145 cells (P = 0.02). This study identifies the optimal AZD1152 treatment conditions to maximize the radiosensitization of PC3 and DU145 cells. These results suggest a major role for DNA damage and impairment of DNA repair mechanisms in AZD1152-induced radiosensitization of prostate cancer cells. |
---|---|
ISSN: | 0033-7587 1938-5404 |
DOI: | 10.1667/RR2317.1 |