Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems

We investigate how the reduction of the virtual space affects coupled-cluster excitation energies at the approximate singles and doubles coupled-cluster level (CC2). In this reduced-virtual-space (RVS) approach, all virtual orbitals above a certain energy threshold are omitted in the correlation cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2011-06, Vol.134 (21), p.214114-214114-9
Hauptverfasser: Send, Robert, Kaila, Ville R. I., Sundholm, Dage
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214114-9
container_issue 21
container_start_page 214114
container_title The Journal of chemical physics
container_volume 134
creator Send, Robert
Kaila, Ville R. I.
Sundholm, Dage
description We investigate how the reduction of the virtual space affects coupled-cluster excitation energies at the approximate singles and doubles coupled-cluster level (CC2). In this reduced-virtual-space (RVS) approach, all virtual orbitals above a certain energy threshold are omitted in the correlation calculation. The effects of the RVS approach are assessed by calculations on the two lowest excitation energies of 11 biochromophores using different sizes of the virtual space. Our set of biochromophores consists of common model systems for the chromophores of the photoactive yellow protein, the green fluorescent protein, and rhodopsin. The RVS calculations show that most of the high-lying virtual orbitals can be neglected without significantly affecting the accuracy of the obtained excitation energies. Omitting all virtual orbitals above \documentclass[12pt]{minimal}\begin{document}$50\,\rm eV$\end{document} 50 eV in the correlation calculation introduces errors in the excitation energies that are smaller than \documentclass[12pt]{minimal}\begin{document}$0.1\,\rm eV$\end{document} 0.1 eV . By using a RVS energy threshold of \documentclass[12pt]{minimal}\begin{document}$50\,\rm eV$\end{document} 50 eV , the CC2 calculations using triple-ζ basis sets (TZVP) on protonated Schiff base retinal are accelerated by a factor of 6. We demonstrate the applicability of the RVS approach by performing CC2/TZVP calculations on the lowest singlet excitation energy of a rhodopsin model consisting of 165 atoms using RVS thresholds between 20 eV and 120 eV. The calculations on the rhodopsin model show that the RVS errors determined in the gas-phase are a very good approximation to the RVS errors in the protein environment. The RVS approach thus renders purely quantum mechanical treatments of chromophores in protein environments feasible and offers an ab initio alternative to quantum mechanics/molecular mechanics separation schemes.
doi_str_mv 10.1063/1.3596729
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3133567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>880717895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-bfbf52de62644b6b963ee02ca857faab32028774427bc2c60bace19704565fa93</originalsourceid><addsrcrecordid>eNp1kUtLJDEUhYOMaPtY-AeG7AYXpXlUJZWNIDLqgCCIrkOSumlrSFXapErGfz9R2x5n4Spwc865h_shdETJCSWCn9IT3ighmdpCC0paVUmhyDe0IITRSgkidtFezr8JIVSyegftMioE5w1doPEOutlNfRxx9Hh6BPzcp2k2AeeVcYB9TNjFeRWgq1yY8wQJwx_XT-bNAyOkZQ_51RxMWgIeYgA3hzIyY4dhsNB10OH8UqxDPkDb3oQMh-t3Hz1c_ry_uK5ubq9-XZzfVK5maqqst75hHQgm6toKqwQHIMyZtpHeGMsZYa2Udc2kdcwJYktXqiSpG9F4o_g-OnvPXc12gM7BOCUT9Cr1g0kvOppe__8z9o96GZ81p-UuQpaAH-uAFJ9myJMe-uwgBDNCnLNuWyKpbFVTlMfvSpdizgn8Zgsl-hWPpnqNp2i_f661UX7w-Nc7f5z467QNOR29LuR0Icf_AveIoxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880717895</pqid></control><display><type>article</type><title>Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems</title><source>MEDLINE</source><source>American Institute of Physics</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><source>Alma/SFX Local Collection</source><creator>Send, Robert ; Kaila, Ville R. I. ; Sundholm, Dage</creator><creatorcontrib>Send, Robert ; Kaila, Ville R. I. ; Sundholm, Dage</creatorcontrib><description>We investigate how the reduction of the virtual space affects coupled-cluster excitation energies at the approximate singles and doubles coupled-cluster level (CC2). In this reduced-virtual-space (RVS) approach, all virtual orbitals above a certain energy threshold are omitted in the correlation calculation. The effects of the RVS approach are assessed by calculations on the two lowest excitation energies of 11 biochromophores using different sizes of the virtual space. Our set of biochromophores consists of common model systems for the chromophores of the photoactive yellow protein, the green fluorescent protein, and rhodopsin. The RVS calculations show that most of the high-lying virtual orbitals can be neglected without significantly affecting the accuracy of the obtained excitation energies. Omitting all virtual orbitals above \documentclass[12pt]{minimal}\begin{document}$50\,\rm eV$\end{document} 50 eV in the correlation calculation introduces errors in the excitation energies that are smaller than \documentclass[12pt]{minimal}\begin{document}$0.1\,\rm eV$\end{document} 0.1 eV . By using a RVS energy threshold of \documentclass[12pt]{minimal}\begin{document}$50\,\rm eV$\end{document} 50 eV , the CC2 calculations using triple-ζ basis sets (TZVP) on protonated Schiff base retinal are accelerated by a factor of 6. We demonstrate the applicability of the RVS approach by performing CC2/TZVP calculations on the lowest singlet excitation energy of a rhodopsin model consisting of 165 atoms using RVS thresholds between 20 eV and 120 eV. The calculations on the rhodopsin model show that the RVS errors determined in the gas-phase are a very good approximation to the RVS errors in the protein environment. The RVS approach thus renders purely quantum mechanical treatments of chromophores in protein environments feasible and offers an ab initio alternative to quantum mechanics/molecular mechanics separation schemes.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3596729</identifier><identifier>PMID: 21663351</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bacterial Proteins - chemistry ; Benzyl Compounds - chemistry ; Cluster Analysis ; Coumaric Acids - chemistry ; Energy Transfer ; Green Fluorescent Proteins - chemistry ; Imidazolines - chemistry ; Models, Chemical ; Molecular Dynamics Simulation ; Photoreceptors, Microbial - chemistry ; Quantum Theory ; Retinaldehyde - chemistry ; Rhodopsin - chemistry ; Theoretical Methods and Algorithms</subject><ispartof>The Journal of chemical physics, 2011-06, Vol.134 (21), p.214114-214114-9</ispartof><rights>2011 American Institute of Physics</rights><rights>Copyright © 2011 American Institute of Physics 2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-bfbf52de62644b6b963ee02ca857faab32028774427bc2c60bace19704565fa93</citedby><cites>FETCH-LOGICAL-c429t-bfbf52de62644b6b963ee02ca857faab32028774427bc2c60bace19704565fa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,1553,4497,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21663351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Send, Robert</creatorcontrib><creatorcontrib>Kaila, Ville R. I.</creatorcontrib><creatorcontrib>Sundholm, Dage</creatorcontrib><title>Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We investigate how the reduction of the virtual space affects coupled-cluster excitation energies at the approximate singles and doubles coupled-cluster level (CC2). In this reduced-virtual-space (RVS) approach, all virtual orbitals above a certain energy threshold are omitted in the correlation calculation. The effects of the RVS approach are assessed by calculations on the two lowest excitation energies of 11 biochromophores using different sizes of the virtual space. Our set of biochromophores consists of common model systems for the chromophores of the photoactive yellow protein, the green fluorescent protein, and rhodopsin. The RVS calculations show that most of the high-lying virtual orbitals can be neglected without significantly affecting the accuracy of the obtained excitation energies. Omitting all virtual orbitals above \documentclass[12pt]{minimal}\begin{document}$50\,\rm eV$\end{document} 50 eV in the correlation calculation introduces errors in the excitation energies that are smaller than \documentclass[12pt]{minimal}\begin{document}$0.1\,\rm eV$\end{document} 0.1 eV . By using a RVS energy threshold of \documentclass[12pt]{minimal}\begin{document}$50\,\rm eV$\end{document} 50 eV , the CC2 calculations using triple-ζ basis sets (TZVP) on protonated Schiff base retinal are accelerated by a factor of 6. We demonstrate the applicability of the RVS approach by performing CC2/TZVP calculations on the lowest singlet excitation energy of a rhodopsin model consisting of 165 atoms using RVS thresholds between 20 eV and 120 eV. The calculations on the rhodopsin model show that the RVS errors determined in the gas-phase are a very good approximation to the RVS errors in the protein environment. The RVS approach thus renders purely quantum mechanical treatments of chromophores in protein environments feasible and offers an ab initio alternative to quantum mechanics/molecular mechanics separation schemes.</description><subject>Bacterial Proteins - chemistry</subject><subject>Benzyl Compounds - chemistry</subject><subject>Cluster Analysis</subject><subject>Coumaric Acids - chemistry</subject><subject>Energy Transfer</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Imidazolines - chemistry</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Photoreceptors, Microbial - chemistry</subject><subject>Quantum Theory</subject><subject>Retinaldehyde - chemistry</subject><subject>Rhodopsin - chemistry</subject><subject>Theoretical Methods and Algorithms</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtLJDEUhYOMaPtY-AeG7AYXpXlUJZWNIDLqgCCIrkOSumlrSFXapErGfz9R2x5n4Spwc865h_shdETJCSWCn9IT3ighmdpCC0paVUmhyDe0IITRSgkidtFezr8JIVSyegftMioE5w1doPEOutlNfRxx9Hh6BPzcp2k2AeeVcYB9TNjFeRWgq1yY8wQJwx_XT-bNAyOkZQ_51RxMWgIeYgA3hzIyY4dhsNB10OH8UqxDPkDb3oQMh-t3Hz1c_ry_uK5ubq9-XZzfVK5maqqst75hHQgm6toKqwQHIMyZtpHeGMsZYa2Udc2kdcwJYktXqiSpG9F4o_g-OnvPXc12gM7BOCUT9Cr1g0kvOppe__8z9o96GZ81p-UuQpaAH-uAFJ9myJMe-uwgBDNCnLNuWyKpbFVTlMfvSpdizgn8Zgsl-hWPpnqNp2i_f661UX7w-Nc7f5z467QNOR29LuR0Icf_AveIoxA</recordid><startdate>20110607</startdate><enddate>20110607</enddate><creator>Send, Robert</creator><creator>Kaila, Ville R. I.</creator><creator>Sundholm, Dage</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110607</creationdate><title>Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems</title><author>Send, Robert ; Kaila, Ville R. I. ; Sundholm, Dage</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-bfbf52de62644b6b963ee02ca857faab32028774427bc2c60bace19704565fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Benzyl Compounds - chemistry</topic><topic>Cluster Analysis</topic><topic>Coumaric Acids - chemistry</topic><topic>Energy Transfer</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Imidazolines - chemistry</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Photoreceptors, Microbial - chemistry</topic><topic>Quantum Theory</topic><topic>Retinaldehyde - chemistry</topic><topic>Rhodopsin - chemistry</topic><topic>Theoretical Methods and Algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Send, Robert</creatorcontrib><creatorcontrib>Kaila, Ville R. I.</creatorcontrib><creatorcontrib>Sundholm, Dage</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Send, Robert</au><au>Kaila, Ville R. I.</au><au>Sundholm, Dage</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2011-06-07</date><risdate>2011</risdate><volume>134</volume><issue>21</issue><spage>214114</spage><epage>214114-9</epage><pages>214114-214114-9</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We investigate how the reduction of the virtual space affects coupled-cluster excitation energies at the approximate singles and doubles coupled-cluster level (CC2). In this reduced-virtual-space (RVS) approach, all virtual orbitals above a certain energy threshold are omitted in the correlation calculation. The effects of the RVS approach are assessed by calculations on the two lowest excitation energies of 11 biochromophores using different sizes of the virtual space. Our set of biochromophores consists of common model systems for the chromophores of the photoactive yellow protein, the green fluorescent protein, and rhodopsin. The RVS calculations show that most of the high-lying virtual orbitals can be neglected without significantly affecting the accuracy of the obtained excitation energies. Omitting all virtual orbitals above \documentclass[12pt]{minimal}\begin{document}$50\,\rm eV$\end{document} 50 eV in the correlation calculation introduces errors in the excitation energies that are smaller than \documentclass[12pt]{minimal}\begin{document}$0.1\,\rm eV$\end{document} 0.1 eV . By using a RVS energy threshold of \documentclass[12pt]{minimal}\begin{document}$50\,\rm eV$\end{document} 50 eV , the CC2 calculations using triple-ζ basis sets (TZVP) on protonated Schiff base retinal are accelerated by a factor of 6. We demonstrate the applicability of the RVS approach by performing CC2/TZVP calculations on the lowest singlet excitation energy of a rhodopsin model consisting of 165 atoms using RVS thresholds between 20 eV and 120 eV. The calculations on the rhodopsin model show that the RVS errors determined in the gas-phase are a very good approximation to the RVS errors in the protein environment. The RVS approach thus renders purely quantum mechanical treatments of chromophores in protein environments feasible and offers an ab initio alternative to quantum mechanics/molecular mechanics separation schemes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>21663351</pmid><doi>10.1063/1.3596729</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2011-06, Vol.134 (21), p.214114-214114-9
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3133567
source MEDLINE; American Institute of Physics; AIP_美国物理联合会期刊回溯(NSTL购买); Alma/SFX Local Collection
subjects Bacterial Proteins - chemistry
Benzyl Compounds - chemistry
Cluster Analysis
Coumaric Acids - chemistry
Energy Transfer
Green Fluorescent Proteins - chemistry
Imidazolines - chemistry
Models, Chemical
Molecular Dynamics Simulation
Photoreceptors, Microbial - chemistry
Quantum Theory
Retinaldehyde - chemistry
Rhodopsin - chemistry
Theoretical Methods and Algorithms
title Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20the%20virtual%20space%20for%20coupled-cluster%20excitation%20energies%20of%20large%20molecules%20and%20embedded%20systems&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Send,%20Robert&rft.date=2011-06-07&rft.volume=134&rft.issue=21&rft.spage=214114&rft.epage=214114-9&rft.pages=214114-214114-9&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.3596729&rft_dat=%3Cproquest_pubme%3E880717895%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880717895&rft_id=info:pmid/21663351&rfr_iscdi=true