Glass-liquid transition of water at high pressure

The knowledge of the existence of liquid water under extreme conditions and its concomitant properties are important in many fields of science. Glassy water has previously been prepared by hyperquenching micron-sized droplets of liquid water and vapor deposition on a cold substrate (ASW), and its tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-07, Vol.108 (27), p.11013-11016
1. Verfasser: Andersson, Ove
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11016
container_issue 27
container_start_page 11013
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Andersson, Ove
description The knowledge of the existence of liquid water under extreme conditions and its concomitant properties are important in many fields of science. Glassy water has previously been prepared by hyperquenching micron-sized droplets of liquid water and vapor deposition on a cold substrate (ASW), and its transformation to an ultraviscous liquid form has been reported on heating. A densified amorphous solid form of water, high-density amorphous ice (HDA), has also been made by collapsing the structure of ice at pressures above 1 GPa and temperatures below approximately 140 K, but a corresponding liquid phase has not been detected. Here we report results of heat capacity Cp and thermal conductivity, in situ, measurements, which are consistent with a reversible transition from annealed HDA to ultraviscous high-density liquid water at 1 GPa and 140 K. On heating of HDA, the Cp increases abruptly by (3.4 ± 0.2) J mol⁻¹ K⁻¹ before crystallization starts at (153 ± 1) K. This is larger than the Cp rise at the glass to liquid transition of annealed ASW at 1 atm, which suggests the existence of liquid water under these extreme conditions.
doi_str_mv 10.1073/pnas.1016520108
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3131359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27978734</jstor_id><sourcerecordid>27978734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-37152ed38211215b1acc1b7335cb36dc00c85b2f2628450b93cd6756598786ab3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EosvCmRMQcemF0Bk7_rpUqkopSJU4QLlaTuLd9Sobb-2Eiv8eR1m6FPlgS-83b2b8CHmN8BFBsrN9b1N-oeAUENQTskDQWIpKw1OyAKCyVBWtTsiLlLYAoLmC5-SEotDABC4IXnc2pbLzd6NviyHaPvnBh74Iq-LeDi4Wdig2fr0p9tGlNEb3kjxb2S65V4d7SW4_X_24_FLefLv-enlxUzZcs6FkEjl1LVMUkSKv0TYN1pIx3tRMtA1Ao3hNV1RQVXGoNWtaIbngWkklbM2W5MPsm-7dfqzNPvqdjb9NsN588j8vTIhrM-5GU2lWyYyfz3hmd65tXJ-X6R5VPVZ6vzHr8MswzCePvCSnB4MY7kaXBrPzqXFdZ3sXxmSU5JVSuoJMvv-P3IYx9vkzJohTRsU0z9kMNTGkFN3qYRQEM2VnpuzMMbtc8fbfDR74v2FloDgAU-XRThkqDWYnlpE3M7JNQ4hHC6mlkqzK-rtZX9lg7Dr6ZG6_5_YCADXKHM8fn3ixMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875523267</pqid></control><display><type>article</type><title>Glass-liquid transition of water at high pressure</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Andersson, Ove</creator><creatorcontrib>Andersson, Ove</creatorcontrib><description>The knowledge of the existence of liquid water under extreme conditions and its concomitant properties are important in many fields of science. Glassy water has previously been prepared by hyperquenching micron-sized droplets of liquid water and vapor deposition on a cold substrate (ASW), and its transformation to an ultraviscous liquid form has been reported on heating. A densified amorphous solid form of water, high-density amorphous ice (HDA), has also been made by collapsing the structure of ice at pressures above 1 GPa and temperatures below approximately 140 K, but a corresponding liquid phase has not been detected. Here we report results of heat capacity Cp and thermal conductivity, in situ, measurements, which are consistent with a reversible transition from annealed HDA to ultraviscous high-density liquid water at 1 GPa and 140 K. On heating of HDA, the Cp increases abruptly by (3.4 ± 0.2) J mol⁻¹ K⁻¹ before crystallization starts at (153 ± 1) K. This is larger than the Cp rise at the glass to liquid transition of annealed ASW at 1 atm, which suggests the existence of liquid water under these extreme conditions.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1016520108</identifier><identifier>PMID: 21690361</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Chemical vapor deposition ; cold ; Cooling ; Crystallization ; droplets ; Glass ; glass transition ; Glass transition temperature ; heat ; Heat conductivity ; Ice ; Kinetics ; Liquids ; Physical Sciences ; pressure-induced amorphization ; relaxation ; Relaxation time ; Specific heat ; Substrates ; Temperature ; thermal conductivity ; Transition temperature ; water vapor</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-07, Vol.108 (27), p.11013-11016</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 5, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-37152ed38211215b1acc1b7335cb36dc00c85b2f2628450b93cd6756598786ab3</citedby><cites>FETCH-LOGICAL-c593t-37152ed38211215b1acc1b7335cb36dc00c85b2f2628450b93cd6756598786ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27978734$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27978734$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,550,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21690361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-49347$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Andersson, Ove</creatorcontrib><title>Glass-liquid transition of water at high pressure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The knowledge of the existence of liquid water under extreme conditions and its concomitant properties are important in many fields of science. Glassy water has previously been prepared by hyperquenching micron-sized droplets of liquid water and vapor deposition on a cold substrate (ASW), and its transformation to an ultraviscous liquid form has been reported on heating. A densified amorphous solid form of water, high-density amorphous ice (HDA), has also been made by collapsing the structure of ice at pressures above 1 GPa and temperatures below approximately 140 K, but a corresponding liquid phase has not been detected. Here we report results of heat capacity Cp and thermal conductivity, in situ, measurements, which are consistent with a reversible transition from annealed HDA to ultraviscous high-density liquid water at 1 GPa and 140 K. On heating of HDA, the Cp increases abruptly by (3.4 ± 0.2) J mol⁻¹ K⁻¹ before crystallization starts at (153 ± 1) K. This is larger than the Cp rise at the glass to liquid transition of annealed ASW at 1 atm, which suggests the existence of liquid water under these extreme conditions.</description><subject>Chemical vapor deposition</subject><subject>cold</subject><subject>Cooling</subject><subject>Crystallization</subject><subject>droplets</subject><subject>Glass</subject><subject>glass transition</subject><subject>Glass transition temperature</subject><subject>heat</subject><subject>Heat conductivity</subject><subject>Ice</subject><subject>Kinetics</subject><subject>Liquids</subject><subject>Physical Sciences</subject><subject>pressure-induced amorphization</subject><subject>relaxation</subject><subject>Relaxation time</subject><subject>Specific heat</subject><subject>Substrates</subject><subject>Temperature</subject><subject>thermal conductivity</subject><subject>Transition temperature</subject><subject>water vapor</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNpdkc1v1DAQxS0EosvCmRMQcemF0Bk7_rpUqkopSJU4QLlaTuLd9Sobb-2Eiv8eR1m6FPlgS-83b2b8CHmN8BFBsrN9b1N-oeAUENQTskDQWIpKw1OyAKCyVBWtTsiLlLYAoLmC5-SEotDABC4IXnc2pbLzd6NviyHaPvnBh74Iq-LeDi4Wdig2fr0p9tGlNEb3kjxb2S65V4d7SW4_X_24_FLefLv-enlxUzZcs6FkEjl1LVMUkSKv0TYN1pIx3tRMtA1Ao3hNV1RQVXGoNWtaIbngWkklbM2W5MPsm-7dfqzNPvqdjb9NsN588j8vTIhrM-5GU2lWyYyfz3hmd65tXJ-X6R5VPVZ6vzHr8MswzCePvCSnB4MY7kaXBrPzqXFdZ3sXxmSU5JVSuoJMvv-P3IYx9vkzJohTRsU0z9kMNTGkFN3qYRQEM2VnpuzMMbtc8fbfDR74v2FloDgAU-XRThkqDWYnlpE3M7JNQ4hHC6mlkqzK-rtZX9lg7Dr6ZG6_5_YCADXKHM8fn3ixMw</recordid><startdate>20110705</startdate><enddate>20110705</enddate><creator>Andersson, Ove</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope></search><sort><creationdate>20110705</creationdate><title>Glass-liquid transition of water at high pressure</title><author>Andersson, Ove</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-37152ed38211215b1acc1b7335cb36dc00c85b2f2628450b93cd6756598786ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Chemical vapor deposition</topic><topic>cold</topic><topic>Cooling</topic><topic>Crystallization</topic><topic>droplets</topic><topic>Glass</topic><topic>glass transition</topic><topic>Glass transition temperature</topic><topic>heat</topic><topic>Heat conductivity</topic><topic>Ice</topic><topic>Kinetics</topic><topic>Liquids</topic><topic>Physical Sciences</topic><topic>pressure-induced amorphization</topic><topic>relaxation</topic><topic>Relaxation time</topic><topic>Specific heat</topic><topic>Substrates</topic><topic>Temperature</topic><topic>thermal conductivity</topic><topic>Transition temperature</topic><topic>water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersson, Ove</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersson, Ove</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glass-liquid transition of water at high pressure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-07-05</date><risdate>2011</risdate><volume>108</volume><issue>27</issue><spage>11013</spage><epage>11016</epage><pages>11013-11016</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The knowledge of the existence of liquid water under extreme conditions and its concomitant properties are important in many fields of science. Glassy water has previously been prepared by hyperquenching micron-sized droplets of liquid water and vapor deposition on a cold substrate (ASW), and its transformation to an ultraviscous liquid form has been reported on heating. A densified amorphous solid form of water, high-density amorphous ice (HDA), has also been made by collapsing the structure of ice at pressures above 1 GPa and temperatures below approximately 140 K, but a corresponding liquid phase has not been detected. Here we report results of heat capacity Cp and thermal conductivity, in situ, measurements, which are consistent with a reversible transition from annealed HDA to ultraviscous high-density liquid water at 1 GPa and 140 K. On heating of HDA, the Cp increases abruptly by (3.4 ± 0.2) J mol⁻¹ K⁻¹ before crystallization starts at (153 ± 1) K. This is larger than the Cp rise at the glass to liquid transition of annealed ASW at 1 atm, which suggests the existence of liquid water under these extreme conditions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21690361</pmid><doi>10.1073/pnas.1016520108</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-07, Vol.108 (27), p.11013-11016
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3131359
source PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online; Free Full-Text Journals in Chemistry; JSTOR
subjects Chemical vapor deposition
cold
Cooling
Crystallization
droplets
Glass
glass transition
Glass transition temperature
heat
Heat conductivity
Ice
Kinetics
Liquids
Physical Sciences
pressure-induced amorphization
relaxation
Relaxation time
Specific heat
Substrates
Temperature
thermal conductivity
Transition temperature
water vapor
title Glass-liquid transition of water at high pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glass-liquid%20transition%20of%20water%20at%20high%20pressure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Andersson,%20Ove&rft.date=2011-07-05&rft.volume=108&rft.issue=27&rft.spage=11013&rft.epage=11016&rft.pages=11013-11016&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1016520108&rft_dat=%3Cjstor_pubme%3E27978734%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875523267&rft_id=info:pmid/21690361&rft_jstor_id=27978734&rfr_iscdi=true