Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules

The programming of cellular networks to achieve new biological functions depends on the development of genetic tools that link the presence of a molecular signal to gene-regulatory activity. Recently, a set of engineered RNA controllers was described that enabled predictable tuning of gene expressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2011-07, Vol.39 (12), p.5299-5311
Hauptverfasser: Babiskin, Andrew H., Smolke, Christina D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5311
container_issue 12
container_start_page 5299
container_title Nucleic acids research
container_volume 39
creator Babiskin, Andrew H.
Smolke, Christina D.
description The programming of cellular networks to achieve new biological functions depends on the development of genetic tools that link the presence of a molecular signal to gene-regulatory activity. Recently, a set of engineered RNA controllers was described that enabled predictable tuning of gene expression in the yeast Saccharomyces cerevisiae through directed cleavage of transcripts by an RNase III enzyme, Rnt1p. Here, we describe a strategy for building a new class of RNA sensing-actuation devices based on direct integration of RNA aptamers into a region of the Rnt1p hairpin that modulates Rnt1p cleavage rates. We demonstrate that ligand binding to the integrated aptamer domain is associated with a structural change sufficient to inhibit Rnt1p processing. Three tuning strategies based on the incorporation of different functional modules into the Rnt1p switch platform were demonstrated to optimize switch dynamics and ligand responsiveness. We further demonstrated that these tuning modules can be implemented combinatorially in a predictable manner to further improve the regulatory response properties of the switch. The modularity and tunability of the Rnt1p switch platform will allow for rapid optimization and tailoring of this gene control device, thus providing a useful tool for the design of complex genetic networks in yeast.
doi_str_mv 10.1093/nar/gkr090
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3130268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkr090</oup_id><sourcerecordid>899158325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-15fe8ff400ac7053eb5ee92aebcb59b98dc0768e4256bfe1e0c964a702516cb73</originalsourceid><addsrcrecordid>eNqFkcFq3DAQhkVIaLZpL3mAoksIFJyMLMu2LoVlSdOF0EJIz0LWjr1KZWkr2YF9-zo4CeklOc1hvvn4h5-QUwYXDCS_9Dpedn8iSDggC8bLPCtkmR-SBXAQGYOiPiYfU7oHYAUTxQdynDMuBHC5IN2V76xHjNZ31NlO-00WMe2CT_YB6e3PJTXBDzE4hzFR6-kedRrosI1h7LbTRKpTwr5xexra6UAnpOv1mg6jf3T2YTM6TJ_IUatdws9P84T8_n51t_qR3fy6Xq-WN5kRIIaMiRbrti0AtKlAcGwEosw1NqYRspH1xkBV1ljkomxaZAhGloWuIBesNE3FT8i32bsbmx43Bqfs2qldtL2OexW0Vf9vvN2qLjwozjjkZT0Jzp8EMfwdMQ2qt8mgc9pjGJOqpWSi5rl4n6xExWoJxUR-nUkTQ0oR25c8DNRjhWqqUM0VTvCX1x-8oM-dTcDZDIRx95boH1Cepzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875718904</pqid></control><display><type>article</type><title>Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Babiskin, Andrew H. ; Smolke, Christina D.</creator><creatorcontrib>Babiskin, Andrew H. ; Smolke, Christina D.</creatorcontrib><description>The programming of cellular networks to achieve new biological functions depends on the development of genetic tools that link the presence of a molecular signal to gene-regulatory activity. Recently, a set of engineered RNA controllers was described that enabled predictable tuning of gene expression in the yeast Saccharomyces cerevisiae through directed cleavage of transcripts by an RNase III enzyme, Rnt1p. Here, we describe a strategy for building a new class of RNA sensing-actuation devices based on direct integration of RNA aptamers into a region of the Rnt1p hairpin that modulates Rnt1p cleavage rates. We demonstrate that ligand binding to the integrated aptamer domain is associated with a structural change sufficient to inhibit Rnt1p processing. Three tuning strategies based on the incorporation of different functional modules into the Rnt1p switch platform were demonstrated to optimize switch dynamics and ligand responsiveness. We further demonstrated that these tuning modules can be implemented combinatorially in a predictable manner to further improve the regulatory response properties of the switch. The modularity and tunability of the Rnt1p switch platform will allow for rapid optimization and tailoring of this gene control device, thus providing a useful tool for the design of complex genetic networks in yeast.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkr090</identifier><identifier>PMID: 21355039</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Aptamers, Nucleotide - chemistry ; Aptamers, Nucleotide - metabolism ; Gene Expression Regulation ; Genetic Engineering ; Ligands ; Ribonuclease III - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Synthetic Biology and Chemistry ; Theophylline - pharmacology</subject><ispartof>Nucleic acids research, 2011-07, Vol.39 (12), p.5299-5311</ispartof><rights>The Author(s) 2011. Published by Oxford University Press. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-15fe8ff400ac7053eb5ee92aebcb59b98dc0768e4256bfe1e0c964a702516cb73</citedby><cites>FETCH-LOGICAL-c505t-15fe8ff400ac7053eb5ee92aebcb59b98dc0768e4256bfe1e0c964a702516cb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130268/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130268/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1603,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21355039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Babiskin, Andrew H.</creatorcontrib><creatorcontrib>Smolke, Christina D.</creatorcontrib><title>Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The programming of cellular networks to achieve new biological functions depends on the development of genetic tools that link the presence of a molecular signal to gene-regulatory activity. Recently, a set of engineered RNA controllers was described that enabled predictable tuning of gene expression in the yeast Saccharomyces cerevisiae through directed cleavage of transcripts by an RNase III enzyme, Rnt1p. Here, we describe a strategy for building a new class of RNA sensing-actuation devices based on direct integration of RNA aptamers into a region of the Rnt1p hairpin that modulates Rnt1p cleavage rates. We demonstrate that ligand binding to the integrated aptamer domain is associated with a structural change sufficient to inhibit Rnt1p processing. Three tuning strategies based on the incorporation of different functional modules into the Rnt1p switch platform were demonstrated to optimize switch dynamics and ligand responsiveness. We further demonstrated that these tuning modules can be implemented combinatorially in a predictable manner to further improve the regulatory response properties of the switch. The modularity and tunability of the Rnt1p switch platform will allow for rapid optimization and tailoring of this gene control device, thus providing a useful tool for the design of complex genetic networks in yeast.</description><subject>Aptamers, Nucleotide - chemistry</subject><subject>Aptamers, Nucleotide - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Genetic Engineering</subject><subject>Ligands</subject><subject>Ribonuclease III - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Synthetic Biology and Chemistry</subject><subject>Theophylline - pharmacology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkcFq3DAQhkVIaLZpL3mAoksIFJyMLMu2LoVlSdOF0EJIz0LWjr1KZWkr2YF9-zo4CeklOc1hvvn4h5-QUwYXDCS_9Dpedn8iSDggC8bLPCtkmR-SBXAQGYOiPiYfU7oHYAUTxQdynDMuBHC5IN2V76xHjNZ31NlO-00WMe2CT_YB6e3PJTXBDzE4hzFR6-kedRrosI1h7LbTRKpTwr5xexra6UAnpOv1mg6jf3T2YTM6TJ_IUatdws9P84T8_n51t_qR3fy6Xq-WN5kRIIaMiRbrti0AtKlAcGwEosw1NqYRspH1xkBV1ljkomxaZAhGloWuIBesNE3FT8i32bsbmx43Bqfs2qldtL2OexW0Vf9vvN2qLjwozjjkZT0Jzp8EMfwdMQ2qt8mgc9pjGJOqpWSi5rl4n6xExWoJxUR-nUkTQ0oR25c8DNRjhWqqUM0VTvCX1x-8oM-dTcDZDIRx95boH1Cepzg</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Babiskin, Andrew H.</creator><creator>Smolke, Christina D.</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110701</creationdate><title>Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules</title><author>Babiskin, Andrew H. ; Smolke, Christina D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-15fe8ff400ac7053eb5ee92aebcb59b98dc0768e4256bfe1e0c964a702516cb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aptamers, Nucleotide - chemistry</topic><topic>Aptamers, Nucleotide - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Genetic Engineering</topic><topic>Ligands</topic><topic>Ribonuclease III - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Synthetic Biology and Chemistry</topic><topic>Theophylline - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babiskin, Andrew H.</creatorcontrib><creatorcontrib>Smolke, Christina D.</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babiskin, Andrew H.</au><au>Smolke, Christina D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>39</volume><issue>12</issue><spage>5299</spage><epage>5311</epage><pages>5299-5311</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The programming of cellular networks to achieve new biological functions depends on the development of genetic tools that link the presence of a molecular signal to gene-regulatory activity. Recently, a set of engineered RNA controllers was described that enabled predictable tuning of gene expression in the yeast Saccharomyces cerevisiae through directed cleavage of transcripts by an RNase III enzyme, Rnt1p. Here, we describe a strategy for building a new class of RNA sensing-actuation devices based on direct integration of RNA aptamers into a region of the Rnt1p hairpin that modulates Rnt1p cleavage rates. We demonstrate that ligand binding to the integrated aptamer domain is associated with a structural change sufficient to inhibit Rnt1p processing. Three tuning strategies based on the incorporation of different functional modules into the Rnt1p switch platform were demonstrated to optimize switch dynamics and ligand responsiveness. We further demonstrated that these tuning modules can be implemented combinatorially in a predictable manner to further improve the regulatory response properties of the switch. The modularity and tunability of the Rnt1p switch platform will allow for rapid optimization and tailoring of this gene control device, thus providing a useful tool for the design of complex genetic networks in yeast.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>21355039</pmid><doi>10.1093/nar/gkr090</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2011-07, Vol.39 (12), p.5299-5311
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3130268
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aptamers, Nucleotide - chemistry
Aptamers, Nucleotide - metabolism
Gene Expression Regulation
Genetic Engineering
Ligands
Ribonuclease III - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - metabolism
Synthetic Biology and Chemistry
Theophylline - pharmacology
title Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20ligand-responsive%20RNA%20controllers%20in%20yeast%20through%20the%20assembly%20of%20RNase%20III%20tuning%20modules&rft.jtitle=Nucleic%20acids%20research&rft.au=Babiskin,%20Andrew%20H.&rft.date=2011-07-01&rft.volume=39&rft.issue=12&rft.spage=5299&rft.epage=5311&rft.pages=5299-5311&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkr090&rft_dat=%3Cproquest_pubme%3E899158325%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875718904&rft_id=info:pmid/21355039&rft_oup_id=10.1093/nar/gkr090&rfr_iscdi=true