Discrete-time semi-Markov modeling of human papillomavirus persistence
Multi‐state modeling is often employed to describe the progression of a disease process. In epidemiological studies of certain diseases, the disease state is typically only observed at periodic clinical visits, producing incomplete longitudinal data. In this paper we consider fitting semi‐Markov mod...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2011-07, Vol.30 (17), p.2160-2170 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2170 |
---|---|
container_issue | 17 |
container_start_page | 2160 |
container_title | Statistics in medicine |
container_volume | 30 |
creator | Mitchell, C. E. Hudgens, M. G. King, C. C. Cu-Uvin, S. Lo, Y. Rompalo, A. Sobel, J. Smith, J. S. |
description | Multi‐state modeling is often employed to describe the progression of a disease process. In epidemiological studies of certain diseases, the disease state is typically only observed at periodic clinical visits, producing incomplete longitudinal data. In this paper we consider fitting semi‐Markov models to estimate the persistence of human papillomavirus (HPV) type‐specific infection in studies where the status of HPV type(s) is assessed periodically. Simulation study results are presented indicating that the semi‐Markov estimator is more accurate than an estimator currently used in the HPV literature. The methods are illustrated using data from the HIV Epidemiology Research Study. Copyright © 2011 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.4257 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3129469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>874894687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5077-e3bf6cf937cd1311b2ab4d936a1789fc2a3c332c063c259df40059dd074a3acc3</originalsourceid><addsrcrecordid>eNp9kV1PFDEUQBsjkRVM_AVm4ou8DPZjOm1fTAwCSwJLVAyPTbdzB4rT6djOrPLv7YZl_Uj06T705OT2HoReEnxIMKZvk_OHFeXiCZoRrESJKZdP0QxTIcpaEL6Lnqd0hzEhnIpnaJcSzqSSfIZOPrhkI4xQjs5DkcC78sLEr2FV-NBA5_qbIrTF7eRNXwxmcF0XvFm5OKVigJhcGqG3sI92WtMleLGZe-jLyfHV0bw8vzw9O3p_XlqO8y7Alm1tW8WEbQgjZEnNsmoUqw0RUrWWGmYZoxbXzFKumrbCOI8Gi8owYy3bQ-8evMO09NBY6MdoOj1E502818E4_edL7271TVhpRqiqapUFbzaCGL5NkEbt8wGg60wPYUpaikpmUIpMHvyXJJhiyVReNaOv_0LvwhT7fIjsq7GURLBfPhtDShHa7dYE63VFnSvqdcWMvvr9l1vwMVsGygfgu-vg_p8i_fnsYiPc8OtcP7Z87qxrwQTX14tTvbi6nn_8NF_omv0Efia2RQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>876088173</pqid></control><display><type>article</type><title>Discrete-time semi-Markov modeling of human papillomavirus persistence</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Mitchell, C. E. ; Hudgens, M. G. ; King, C. C. ; Cu-Uvin, S. ; Lo, Y. ; Rompalo, A. ; Sobel, J. ; Smith, J. S.</creator><creatorcontrib>Mitchell, C. E. ; Hudgens, M. G. ; King, C. C. ; Cu-Uvin, S. ; Lo, Y. ; Rompalo, A. ; Sobel, J. ; Smith, J. S.</creatorcontrib><description>Multi‐state modeling is often employed to describe the progression of a disease process. In epidemiological studies of certain diseases, the disease state is typically only observed at periodic clinical visits, producing incomplete longitudinal data. In this paper we consider fitting semi‐Markov models to estimate the persistence of human papillomavirus (HPV) type‐specific infection in studies where the status of HPV type(s) is assessed periodically. Simulation study results are presented indicating that the semi‐Markov estimator is more accurate than an estimator currently used in the HPV literature. The methods are illustrated using data from the HIV Epidemiology Research Study. Copyright © 2011 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.4257</identifier><identifier>PMID: 21538985</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Computer Simulation ; Epidemiology ; Estimating techniques ; Female ; Human immunodeficiency virus ; Human papillomavirus ; Humans ; Longitudinal Studies ; Markov analysis ; Markov Chains ; Models, Immunological ; panel data ; Papillomaviridae - immunology ; Papillomavirus Infections - epidemiology ; Papillomavirus Infections - immunology ; Papillomavirus Infections - virology ; Simulation ; stochastic process</subject><ispartof>Statistics in medicine, 2011-07, Vol.30 (17), p.2160-2170</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Jul 30, 2011</rights><rights>Copyright © John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5077-e3bf6cf937cd1311b2ab4d936a1789fc2a3c332c063c259df40059dd074a3acc3</citedby><cites>FETCH-LOGICAL-c5077-e3bf6cf937cd1311b2ab4d936a1789fc2a3c332c063c259df40059dd074a3acc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.4257$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.4257$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21538985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitchell, C. E.</creatorcontrib><creatorcontrib>Hudgens, M. G.</creatorcontrib><creatorcontrib>King, C. C.</creatorcontrib><creatorcontrib>Cu-Uvin, S.</creatorcontrib><creatorcontrib>Lo, Y.</creatorcontrib><creatorcontrib>Rompalo, A.</creatorcontrib><creatorcontrib>Sobel, J.</creatorcontrib><creatorcontrib>Smith, J. S.</creatorcontrib><title>Discrete-time semi-Markov modeling of human papillomavirus persistence</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Multi‐state modeling is often employed to describe the progression of a disease process. In epidemiological studies of certain diseases, the disease state is typically only observed at periodic clinical visits, producing incomplete longitudinal data. In this paper we consider fitting semi‐Markov models to estimate the persistence of human papillomavirus (HPV) type‐specific infection in studies where the status of HPV type(s) is assessed periodically. Simulation study results are presented indicating that the semi‐Markov estimator is more accurate than an estimator currently used in the HPV literature. The methods are illustrated using data from the HIV Epidemiology Research Study. Copyright © 2011 John Wiley & Sons, Ltd.</description><subject>Computer Simulation</subject><subject>Epidemiology</subject><subject>Estimating techniques</subject><subject>Female</subject><subject>Human immunodeficiency virus</subject><subject>Human papillomavirus</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Models, Immunological</subject><subject>panel data</subject><subject>Papillomaviridae - immunology</subject><subject>Papillomavirus Infections - epidemiology</subject><subject>Papillomavirus Infections - immunology</subject><subject>Papillomavirus Infections - virology</subject><subject>Simulation</subject><subject>stochastic process</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV1PFDEUQBsjkRVM_AVm4ou8DPZjOm1fTAwCSwJLVAyPTbdzB4rT6djOrPLv7YZl_Uj06T705OT2HoReEnxIMKZvk_OHFeXiCZoRrESJKZdP0QxTIcpaEL6Lnqd0hzEhnIpnaJcSzqSSfIZOPrhkI4xQjs5DkcC78sLEr2FV-NBA5_qbIrTF7eRNXwxmcF0XvFm5OKVigJhcGqG3sI92WtMleLGZe-jLyfHV0bw8vzw9O3p_XlqO8y7Alm1tW8WEbQgjZEnNsmoUqw0RUrWWGmYZoxbXzFKumrbCOI8Gi8owYy3bQ-8evMO09NBY6MdoOj1E502818E4_edL7271TVhpRqiqapUFbzaCGL5NkEbt8wGg60wPYUpaikpmUIpMHvyXJJhiyVReNaOv_0LvwhT7fIjsq7GURLBfPhtDShHa7dYE63VFnSvqdcWMvvr9l1vwMVsGygfgu-vg_p8i_fnsYiPc8OtcP7Z87qxrwQTX14tTvbi6nn_8NF_omv0Efia2RQ</recordid><startdate>20110730</startdate><enddate>20110730</enddate><creator>Mitchell, C. E.</creator><creator>Hudgens, M. G.</creator><creator>King, C. C.</creator><creator>Cu-Uvin, S.</creator><creator>Lo, Y.</creator><creator>Rompalo, A.</creator><creator>Sobel, J.</creator><creator>Smith, J. S.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110730</creationdate><title>Discrete-time semi-Markov modeling of human papillomavirus persistence</title><author>Mitchell, C. E. ; Hudgens, M. G. ; King, C. C. ; Cu-Uvin, S. ; Lo, Y. ; Rompalo, A. ; Sobel, J. ; Smith, J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5077-e3bf6cf937cd1311b2ab4d936a1789fc2a3c332c063c259df40059dd074a3acc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer Simulation</topic><topic>Epidemiology</topic><topic>Estimating techniques</topic><topic>Female</topic><topic>Human immunodeficiency virus</topic><topic>Human papillomavirus</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Models, Immunological</topic><topic>panel data</topic><topic>Papillomaviridae - immunology</topic><topic>Papillomavirus Infections - epidemiology</topic><topic>Papillomavirus Infections - immunology</topic><topic>Papillomavirus Infections - virology</topic><topic>Simulation</topic><topic>stochastic process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchell, C. E.</creatorcontrib><creatorcontrib>Hudgens, M. G.</creatorcontrib><creatorcontrib>King, C. C.</creatorcontrib><creatorcontrib>Cu-Uvin, S.</creatorcontrib><creatorcontrib>Lo, Y.</creatorcontrib><creatorcontrib>Rompalo, A.</creatorcontrib><creatorcontrib>Sobel, J.</creatorcontrib><creatorcontrib>Smith, J. S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchell, C. E.</au><au>Hudgens, M. G.</au><au>King, C. C.</au><au>Cu-Uvin, S.</au><au>Lo, Y.</au><au>Rompalo, A.</au><au>Sobel, J.</au><au>Smith, J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete-time semi-Markov modeling of human papillomavirus persistence</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2011-07-30</date><risdate>2011</risdate><volume>30</volume><issue>17</issue><spage>2160</spage><epage>2170</epage><pages>2160-2170</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Multi‐state modeling is often employed to describe the progression of a disease process. In epidemiological studies of certain diseases, the disease state is typically only observed at periodic clinical visits, producing incomplete longitudinal data. In this paper we consider fitting semi‐Markov models to estimate the persistence of human papillomavirus (HPV) type‐specific infection in studies where the status of HPV type(s) is assessed periodically. Simulation study results are presented indicating that the semi‐Markov estimator is more accurate than an estimator currently used in the HPV literature. The methods are illustrated using data from the HIV Epidemiology Research Study. Copyright © 2011 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>21538985</pmid><doi>10.1002/sim.4257</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2011-07, Vol.30 (17), p.2160-2170 |
issn | 0277-6715 1097-0258 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3129469 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Computer Simulation Epidemiology Estimating techniques Female Human immunodeficiency virus Human papillomavirus Humans Longitudinal Studies Markov analysis Markov Chains Models, Immunological panel data Papillomaviridae - immunology Papillomavirus Infections - epidemiology Papillomavirus Infections - immunology Papillomavirus Infections - virology Simulation stochastic process |
title | Discrete-time semi-Markov modeling of human papillomavirus persistence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete-time%20semi-Markov%20modeling%20of%20human%20papillomavirus%20persistence&rft.jtitle=Statistics%20in%20medicine&rft.au=Mitchell,%20C.%20E.&rft.date=2011-07-30&rft.volume=30&rft.issue=17&rft.spage=2160&rft.epage=2170&rft.pages=2160-2170&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.4257&rft_dat=%3Cproquest_pubme%3E874894687%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=876088173&rft_id=info:pmid/21538985&rfr_iscdi=true |