Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, iso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-07, Vol.286 (27), p.23900-23910
Hauptverfasser: Barta, Michael L., Skaff, D. Andrew, McWhorter, William J., Herdendorf, Timothy J., Miziorko, Henry M., Geisbrecht, Brian V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23910
container_issue 27
container_start_page 23900
container_title The Journal of biological chemistry
container_volume 286
creator Barta, Michael L.
Skaff, D. Andrew
McWhorter, William J.
Herdendorf, Timothy J.
Miziorko, Henry M.
Geisbrecht, Brian V.
description The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in Ki values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser192 as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases kcat by ∼103-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.
doi_str_mv 10.1074/jbc.M111.242016
format Article
fullrecord <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3129171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819487413</els_id><sourcerecordid>21561869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-c985ee3691e254d078137911365cf849a8d62b6ceb977f76f58a126efeab47ac3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxSMEotvCmRuyuGebyR87viC1C4VKLUgUJG6W40w2rrJ2ZDsL-Uh8SxwCFRzwxR7Nb94b-SXJC8i2kLHy_L5R21sA2OZlngF9lGwgq4u0qODr42STZTmkPK_qk-TU-_ssnpLD0-Qkh4pCTfkm-bFzsw9yIHfBTSpMDj2xXazk2M-DVVapyRMcdYvuoFvtyS0e5WCNDEje6LG3fux_vVFJ19jv8yA9kks7mZYES65NrxsdrJvJhYlze08-4RGj4Qf8Frte7_tAtIno3dT44BatS21abfZERo2djNvNXvtnyZNODh6f_77Pki9Xbz_v3qc3H99d7y5uUlVSHlLF6wqxoBwwr8o2YzUUjAMUtFJdXXJZtzRvqMKGM9Yx2lW1hJxih7IpmVTFWfJ61R2n5oCtQhOXGsTo9EG6WVipxb8do3uxt0dRQM6BQRR4tQpYH7TwSgdUvbLGoAoCYiSM1RE6XyHlrPcOuwcDyMQSrYjRiiVasUYbJ17-vdcD_yfLCPAVwPg7R41u8UajsNVusW6t_q_4Ty0wuHc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Barta, Michael L. ; Skaff, D. Andrew ; McWhorter, William J. ; Herdendorf, Timothy J. ; Miziorko, Henry M. ; Geisbrecht, Brian V.</creator><creatorcontrib>Barta, Michael L. ; Skaff, D. Andrew ; McWhorter, William J. ; Herdendorf, Timothy J. ; Miziorko, Henry M. ; Geisbrecht, Brian V. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in Ki values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser192 as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases kcat by ∼103-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.242016</identifier><identifier>PMID: 21561869</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Amino Acid Substitution ; ANTIMICROBIAL AGENTS ; BACTERIA ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Binding Sites ; BIOSYNTHESIS ; Carboxy-Lyases ; CATALYSIS ; CELL WALL ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; DECARBOXYLASES ; EC 4.1.1.33 ; Enzyme Catalysis ; ENZYME INHIBITORS ; Enzyme Mechanisms ; Enzyme Mutation ; Enzyme Structure ; ENZYMES ; Enzymology ; GHMP Kinases ; Hemiterpenes - chemistry ; Hemiterpenes - genetics ; Hemiterpenes - metabolism ; Isoprenoid Biosynthesis ; Mevalonate 5-Diphosphate Decarboxylase ; Mevalonate Pathway ; Mevalonic Acid - analogs &amp; derivatives ; Mevalonic Acid - chemistry ; Mevalonic Acid - metabolism ; MUTANTS ; Mutation, Missense ; MUTATIONS ; Organophosphorus Compounds - chemistry ; Organophosphorus Compounds - metabolism ; PHOSPHATES ; PHOSPHOTRANSFERASES ; PRECURSOR ; PROLINE ; RESOLUTION ; STAPHYLOCOCCUS ; Staphylococcus epidermidis - enzymology ; Staphylococcus epidermidis - genetics ; STREPTOCOCCUS ; Structure-Activity Relationship ; Substrate Specificity ; SUBSTRATES ; TARGETS</subject><ispartof>The Journal of biological chemistry, 2011-07, Vol.286 (27), p.23900-23910</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-c985ee3691e254d078137911365cf849a8d62b6ceb977f76f58a126efeab47ac3</citedby><cites>FETCH-LOGICAL-c469t-c985ee3691e254d078137911365cf849a8d62b6ceb977f76f58a126efeab47ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129171/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129171/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21561869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1021778$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barta, Michael L.</creatorcontrib><creatorcontrib>Skaff, D. Andrew</creatorcontrib><creatorcontrib>McWhorter, William J.</creatorcontrib><creatorcontrib>Herdendorf, Timothy J.</creatorcontrib><creatorcontrib>Miziorko, Henry M.</creatorcontrib><creatorcontrib>Geisbrecht, Brian V.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in Ki values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser192 as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases kcat by ∼103-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Amino Acid Substitution</subject><subject>ANTIMICROBIAL AGENTS</subject><subject>BACTERIA</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding Sites</subject><subject>BIOSYNTHESIS</subject><subject>Carboxy-Lyases</subject><subject>CATALYSIS</subject><subject>CELL WALL</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>DECARBOXYLASES</subject><subject>EC 4.1.1.33</subject><subject>Enzyme Catalysis</subject><subject>ENZYME INHIBITORS</subject><subject>Enzyme Mechanisms</subject><subject>Enzyme Mutation</subject><subject>Enzyme Structure</subject><subject>ENZYMES</subject><subject>Enzymology</subject><subject>GHMP Kinases</subject><subject>Hemiterpenes - chemistry</subject><subject>Hemiterpenes - genetics</subject><subject>Hemiterpenes - metabolism</subject><subject>Isoprenoid Biosynthesis</subject><subject>Mevalonate 5-Diphosphate Decarboxylase</subject><subject>Mevalonate Pathway</subject><subject>Mevalonic Acid - analogs &amp; derivatives</subject><subject>Mevalonic Acid - chemistry</subject><subject>Mevalonic Acid - metabolism</subject><subject>MUTANTS</subject><subject>Mutation, Missense</subject><subject>MUTATIONS</subject><subject>Organophosphorus Compounds - chemistry</subject><subject>Organophosphorus Compounds - metabolism</subject><subject>PHOSPHATES</subject><subject>PHOSPHOTRANSFERASES</subject><subject>PRECURSOR</subject><subject>PROLINE</subject><subject>RESOLUTION</subject><subject>STAPHYLOCOCCUS</subject><subject>Staphylococcus epidermidis - enzymology</subject><subject>Staphylococcus epidermidis - genetics</subject><subject>STREPTOCOCCUS</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>SUBSTRATES</subject><subject>TARGETS</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxSMEotvCmRuyuGebyR87viC1C4VKLUgUJG6W40w2rrJ2ZDsL-Uh8SxwCFRzwxR7Nb94b-SXJC8i2kLHy_L5R21sA2OZlngF9lGwgq4u0qODr42STZTmkPK_qk-TU-_ssnpLD0-Qkh4pCTfkm-bFzsw9yIHfBTSpMDj2xXazk2M-DVVapyRMcdYvuoFvtyS0e5WCNDEje6LG3fux_vVFJ19jv8yA9kks7mZYES65NrxsdrJvJhYlze08-4RGj4Qf8Frte7_tAtIno3dT44BatS21abfZERo2djNvNXvtnyZNODh6f_77Pki9Xbz_v3qc3H99d7y5uUlVSHlLF6wqxoBwwr8o2YzUUjAMUtFJdXXJZtzRvqMKGM9Yx2lW1hJxih7IpmVTFWfJ61R2n5oCtQhOXGsTo9EG6WVipxb8do3uxt0dRQM6BQRR4tQpYH7TwSgdUvbLGoAoCYiSM1RE6XyHlrPcOuwcDyMQSrYjRiiVasUYbJ17-vdcD_yfLCPAVwPg7R41u8UajsNVusW6t_q_4Ty0wuHc</recordid><startdate>20110708</startdate><enddate>20110708</enddate><creator>Barta, Michael L.</creator><creator>Skaff, D. Andrew</creator><creator>McWhorter, William J.</creator><creator>Herdendorf, Timothy J.</creator><creator>Miziorko, Henry M.</creator><creator>Geisbrecht, Brian V.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20110708</creationdate><title>Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis</title><author>Barta, Michael L. ; Skaff, D. Andrew ; McWhorter, William J. ; Herdendorf, Timothy J. ; Miziorko, Henry M. ; Geisbrecht, Brian V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-c985ee3691e254d078137911365cf849a8d62b6ceb977f76f58a126efeab47ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Amino Acid Substitution</topic><topic>ANTIMICROBIAL AGENTS</topic><topic>BACTERIA</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding Sites</topic><topic>BIOSYNTHESIS</topic><topic>Carboxy-Lyases</topic><topic>CATALYSIS</topic><topic>CELL WALL</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>DECARBOXYLASES</topic><topic>EC 4.1.1.33</topic><topic>Enzyme Catalysis</topic><topic>ENZYME INHIBITORS</topic><topic>Enzyme Mechanisms</topic><topic>Enzyme Mutation</topic><topic>Enzyme Structure</topic><topic>ENZYMES</topic><topic>Enzymology</topic><topic>GHMP Kinases</topic><topic>Hemiterpenes - chemistry</topic><topic>Hemiterpenes - genetics</topic><topic>Hemiterpenes - metabolism</topic><topic>Isoprenoid Biosynthesis</topic><topic>Mevalonate 5-Diphosphate Decarboxylase</topic><topic>Mevalonate Pathway</topic><topic>Mevalonic Acid - analogs &amp; derivatives</topic><topic>Mevalonic Acid - chemistry</topic><topic>Mevalonic Acid - metabolism</topic><topic>MUTANTS</topic><topic>Mutation, Missense</topic><topic>MUTATIONS</topic><topic>Organophosphorus Compounds - chemistry</topic><topic>Organophosphorus Compounds - metabolism</topic><topic>PHOSPHATES</topic><topic>PHOSPHOTRANSFERASES</topic><topic>PRECURSOR</topic><topic>PROLINE</topic><topic>RESOLUTION</topic><topic>STAPHYLOCOCCUS</topic><topic>Staphylococcus epidermidis - enzymology</topic><topic>Staphylococcus epidermidis - genetics</topic><topic>STREPTOCOCCUS</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>SUBSTRATES</topic><topic>TARGETS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barta, Michael L.</creatorcontrib><creatorcontrib>Skaff, D. Andrew</creatorcontrib><creatorcontrib>McWhorter, William J.</creatorcontrib><creatorcontrib>Herdendorf, Timothy J.</creatorcontrib><creatorcontrib>Miziorko, Henry M.</creatorcontrib><creatorcontrib>Geisbrecht, Brian V.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barta, Michael L.</au><au>Skaff, D. Andrew</au><au>McWhorter, William J.</au><au>Herdendorf, Timothy J.</au><au>Miziorko, Henry M.</au><au>Geisbrecht, Brian V.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-07-08</date><risdate>2011</risdate><volume>286</volume><issue>27</issue><spage>23900</spage><epage>23910</epage><pages>23900-23910</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in Ki values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser192 as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases kcat by ∼103-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21561869</pmid><doi>10.1074/jbc.M111.242016</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-07, Vol.286 (27), p.23900-23910
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3129171
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 60 APPLIED LIFE SCIENCES
Amino Acid Substitution
ANTIMICROBIAL AGENTS
BACTERIA
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
BASIC BIOLOGICAL SCIENCES
Binding Sites
BIOSYNTHESIS
Carboxy-Lyases
CATALYSIS
CELL WALL
CRYSTAL STRUCTURE
Crystallography, X-Ray
DECARBOXYLASES
EC 4.1.1.33
Enzyme Catalysis
ENZYME INHIBITORS
Enzyme Mechanisms
Enzyme Mutation
Enzyme Structure
ENZYMES
Enzymology
GHMP Kinases
Hemiterpenes - chemistry
Hemiterpenes - genetics
Hemiterpenes - metabolism
Isoprenoid Biosynthesis
Mevalonate 5-Diphosphate Decarboxylase
Mevalonate Pathway
Mevalonic Acid - analogs & derivatives
Mevalonic Acid - chemistry
Mevalonic Acid - metabolism
MUTANTS
Mutation, Missense
MUTATIONS
Organophosphorus Compounds - chemistry
Organophosphorus Compounds - metabolism
PHOSPHATES
PHOSPHOTRANSFERASES
PRECURSOR
PROLINE
RESOLUTION
STAPHYLOCOCCUS
Staphylococcus epidermidis - enzymology
Staphylococcus epidermidis - genetics
STREPTOCOCCUS
Structure-Activity Relationship
Substrate Specificity
SUBSTRATES
TARGETS
title Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structures%20of%20Staphylococcus%20epidermidis%20Mevalonate%20Diphosphate%20Decarboxylase%20Bound%20to%20Inhibitory%20Analogs%20Reveal%20New%20Insight%20into%20Substrate%20Binding%20and%20Catalysis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Barta,%20Michael%20L.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2011-07-08&rft.volume=286&rft.issue=27&rft.spage=23900&rft.epage=23910&rft.pages=23900-23910&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.242016&rft_dat=%3Cpubmed_osti_%3E21561869%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21561869&rft_els_id=S0021925819487413&rfr_iscdi=true