Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis
The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, iso...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2011-07, Vol.286 (27), p.23900-23910 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23910 |
---|---|
container_issue | 27 |
container_start_page | 23900 |
container_title | The Journal of biological chemistry |
container_volume | 286 |
creator | Barta, Michael L. Skaff, D. Andrew McWhorter, William J. Herdendorf, Timothy J. Miziorko, Henry M. Geisbrecht, Brian V. |
description | The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in Ki values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser192 as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases kcat by ∼103-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design. |
doi_str_mv | 10.1074/jbc.M111.242016 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3129171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819487413</els_id><sourcerecordid>21561869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-c985ee3691e254d078137911365cf849a8d62b6ceb977f76f58a126efeab47ac3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxSMEotvCmRuyuGebyR87viC1C4VKLUgUJG6W40w2rrJ2ZDsL-Uh8SxwCFRzwxR7Nb94b-SXJC8i2kLHy_L5R21sA2OZlngF9lGwgq4u0qODr42STZTmkPK_qk-TU-_ssnpLD0-Qkh4pCTfkm-bFzsw9yIHfBTSpMDj2xXazk2M-DVVapyRMcdYvuoFvtyS0e5WCNDEje6LG3fux_vVFJ19jv8yA9kks7mZYES65NrxsdrJvJhYlze08-4RGj4Qf8Frte7_tAtIno3dT44BatS21abfZERo2djNvNXvtnyZNODh6f_77Pki9Xbz_v3qc3H99d7y5uUlVSHlLF6wqxoBwwr8o2YzUUjAMUtFJdXXJZtzRvqMKGM9Yx2lW1hJxih7IpmVTFWfJ61R2n5oCtQhOXGsTo9EG6WVipxb8do3uxt0dRQM6BQRR4tQpYH7TwSgdUvbLGoAoCYiSM1RE6XyHlrPcOuwcDyMQSrYjRiiVasUYbJ17-vdcD_yfLCPAVwPg7R41u8UajsNVusW6t_q_4Ty0wuHc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Barta, Michael L. ; Skaff, D. Andrew ; McWhorter, William J. ; Herdendorf, Timothy J. ; Miziorko, Henry M. ; Geisbrecht, Brian V.</creator><creatorcontrib>Barta, Michael L. ; Skaff, D. Andrew ; McWhorter, William J. ; Herdendorf, Timothy J. ; Miziorko, Henry M. ; Geisbrecht, Brian V. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in Ki values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser192 as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases kcat by ∼103-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.242016</identifier><identifier>PMID: 21561869</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Amino Acid Substitution ; ANTIMICROBIAL AGENTS ; BACTERIA ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Binding Sites ; BIOSYNTHESIS ; Carboxy-Lyases ; CATALYSIS ; CELL WALL ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; DECARBOXYLASES ; EC 4.1.1.33 ; Enzyme Catalysis ; ENZYME INHIBITORS ; Enzyme Mechanisms ; Enzyme Mutation ; Enzyme Structure ; ENZYMES ; Enzymology ; GHMP Kinases ; Hemiterpenes - chemistry ; Hemiterpenes - genetics ; Hemiterpenes - metabolism ; Isoprenoid Biosynthesis ; Mevalonate 5-Diphosphate Decarboxylase ; Mevalonate Pathway ; Mevalonic Acid - analogs & derivatives ; Mevalonic Acid - chemistry ; Mevalonic Acid - metabolism ; MUTANTS ; Mutation, Missense ; MUTATIONS ; Organophosphorus Compounds - chemistry ; Organophosphorus Compounds - metabolism ; PHOSPHATES ; PHOSPHOTRANSFERASES ; PRECURSOR ; PROLINE ; RESOLUTION ; STAPHYLOCOCCUS ; Staphylococcus epidermidis - enzymology ; Staphylococcus epidermidis - genetics ; STREPTOCOCCUS ; Structure-Activity Relationship ; Substrate Specificity ; SUBSTRATES ; TARGETS</subject><ispartof>The Journal of biological chemistry, 2011-07, Vol.286 (27), p.23900-23910</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-c985ee3691e254d078137911365cf849a8d62b6ceb977f76f58a126efeab47ac3</citedby><cites>FETCH-LOGICAL-c469t-c985ee3691e254d078137911365cf849a8d62b6ceb977f76f58a126efeab47ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129171/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129171/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21561869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1021778$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barta, Michael L.</creatorcontrib><creatorcontrib>Skaff, D. Andrew</creatorcontrib><creatorcontrib>McWhorter, William J.</creatorcontrib><creatorcontrib>Herdendorf, Timothy J.</creatorcontrib><creatorcontrib>Miziorko, Henry M.</creatorcontrib><creatorcontrib>Geisbrecht, Brian V.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in Ki values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser192 as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases kcat by ∼103-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Amino Acid Substitution</subject><subject>ANTIMICROBIAL AGENTS</subject><subject>BACTERIA</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding Sites</subject><subject>BIOSYNTHESIS</subject><subject>Carboxy-Lyases</subject><subject>CATALYSIS</subject><subject>CELL WALL</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>DECARBOXYLASES</subject><subject>EC 4.1.1.33</subject><subject>Enzyme Catalysis</subject><subject>ENZYME INHIBITORS</subject><subject>Enzyme Mechanisms</subject><subject>Enzyme Mutation</subject><subject>Enzyme Structure</subject><subject>ENZYMES</subject><subject>Enzymology</subject><subject>GHMP Kinases</subject><subject>Hemiterpenes - chemistry</subject><subject>Hemiterpenes - genetics</subject><subject>Hemiterpenes - metabolism</subject><subject>Isoprenoid Biosynthesis</subject><subject>Mevalonate 5-Diphosphate Decarboxylase</subject><subject>Mevalonate Pathway</subject><subject>Mevalonic Acid - analogs & derivatives</subject><subject>Mevalonic Acid - chemistry</subject><subject>Mevalonic Acid - metabolism</subject><subject>MUTANTS</subject><subject>Mutation, Missense</subject><subject>MUTATIONS</subject><subject>Organophosphorus Compounds - chemistry</subject><subject>Organophosphorus Compounds - metabolism</subject><subject>PHOSPHATES</subject><subject>PHOSPHOTRANSFERASES</subject><subject>PRECURSOR</subject><subject>PROLINE</subject><subject>RESOLUTION</subject><subject>STAPHYLOCOCCUS</subject><subject>Staphylococcus epidermidis - enzymology</subject><subject>Staphylococcus epidermidis - genetics</subject><subject>STREPTOCOCCUS</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>SUBSTRATES</subject><subject>TARGETS</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxSMEotvCmRuyuGebyR87viC1C4VKLUgUJG6W40w2rrJ2ZDsL-Uh8SxwCFRzwxR7Nb94b-SXJC8i2kLHy_L5R21sA2OZlngF9lGwgq4u0qODr42STZTmkPK_qk-TU-_ssnpLD0-Qkh4pCTfkm-bFzsw9yIHfBTSpMDj2xXazk2M-DVVapyRMcdYvuoFvtyS0e5WCNDEje6LG3fux_vVFJ19jv8yA9kks7mZYES65NrxsdrJvJhYlze08-4RGj4Qf8Frte7_tAtIno3dT44BatS21abfZERo2djNvNXvtnyZNODh6f_77Pki9Xbz_v3qc3H99d7y5uUlVSHlLF6wqxoBwwr8o2YzUUjAMUtFJdXXJZtzRvqMKGM9Yx2lW1hJxih7IpmVTFWfJ61R2n5oCtQhOXGsTo9EG6WVipxb8do3uxt0dRQM6BQRR4tQpYH7TwSgdUvbLGoAoCYiSM1RE6XyHlrPcOuwcDyMQSrYjRiiVasUYbJ17-vdcD_yfLCPAVwPg7R41u8UajsNVusW6t_q_4Ty0wuHc</recordid><startdate>20110708</startdate><enddate>20110708</enddate><creator>Barta, Michael L.</creator><creator>Skaff, D. Andrew</creator><creator>McWhorter, William J.</creator><creator>Herdendorf, Timothy J.</creator><creator>Miziorko, Henry M.</creator><creator>Geisbrecht, Brian V.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20110708</creationdate><title>Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis</title><author>Barta, Michael L. ; Skaff, D. Andrew ; McWhorter, William J. ; Herdendorf, Timothy J. ; Miziorko, Henry M. ; Geisbrecht, Brian V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-c985ee3691e254d078137911365cf849a8d62b6ceb977f76f58a126efeab47ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Amino Acid Substitution</topic><topic>ANTIMICROBIAL AGENTS</topic><topic>BACTERIA</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding Sites</topic><topic>BIOSYNTHESIS</topic><topic>Carboxy-Lyases</topic><topic>CATALYSIS</topic><topic>CELL WALL</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>DECARBOXYLASES</topic><topic>EC 4.1.1.33</topic><topic>Enzyme Catalysis</topic><topic>ENZYME INHIBITORS</topic><topic>Enzyme Mechanisms</topic><topic>Enzyme Mutation</topic><topic>Enzyme Structure</topic><topic>ENZYMES</topic><topic>Enzymology</topic><topic>GHMP Kinases</topic><topic>Hemiterpenes - chemistry</topic><topic>Hemiterpenes - genetics</topic><topic>Hemiterpenes - metabolism</topic><topic>Isoprenoid Biosynthesis</topic><topic>Mevalonate 5-Diphosphate Decarboxylase</topic><topic>Mevalonate Pathway</topic><topic>Mevalonic Acid - analogs & derivatives</topic><topic>Mevalonic Acid - chemistry</topic><topic>Mevalonic Acid - metabolism</topic><topic>MUTANTS</topic><topic>Mutation, Missense</topic><topic>MUTATIONS</topic><topic>Organophosphorus Compounds - chemistry</topic><topic>Organophosphorus Compounds - metabolism</topic><topic>PHOSPHATES</topic><topic>PHOSPHOTRANSFERASES</topic><topic>PRECURSOR</topic><topic>PROLINE</topic><topic>RESOLUTION</topic><topic>STAPHYLOCOCCUS</topic><topic>Staphylococcus epidermidis - enzymology</topic><topic>Staphylococcus epidermidis - genetics</topic><topic>STREPTOCOCCUS</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>SUBSTRATES</topic><topic>TARGETS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barta, Michael L.</creatorcontrib><creatorcontrib>Skaff, D. Andrew</creatorcontrib><creatorcontrib>McWhorter, William J.</creatorcontrib><creatorcontrib>Herdendorf, Timothy J.</creatorcontrib><creatorcontrib>Miziorko, Henry M.</creatorcontrib><creatorcontrib>Geisbrecht, Brian V.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barta, Michael L.</au><au>Skaff, D. Andrew</au><au>McWhorter, William J.</au><au>Herdendorf, Timothy J.</au><au>Miziorko, Henry M.</au><au>Geisbrecht, Brian V.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-07-08</date><risdate>2011</risdate><volume>286</volume><issue>27</issue><spage>23900</spage><epage>23910</epage><pages>23900-23910</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in Ki values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser192 as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases kcat by ∼103-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21561869</pmid><doi>10.1074/jbc.M111.242016</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2011-07, Vol.286 (27), p.23900-23910 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3129171 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 60 APPLIED LIFE SCIENCES Amino Acid Substitution ANTIMICROBIAL AGENTS BACTERIA Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism BASIC BIOLOGICAL SCIENCES Binding Sites BIOSYNTHESIS Carboxy-Lyases CATALYSIS CELL WALL CRYSTAL STRUCTURE Crystallography, X-Ray DECARBOXYLASES EC 4.1.1.33 Enzyme Catalysis ENZYME INHIBITORS Enzyme Mechanisms Enzyme Mutation Enzyme Structure ENZYMES Enzymology GHMP Kinases Hemiterpenes - chemistry Hemiterpenes - genetics Hemiterpenes - metabolism Isoprenoid Biosynthesis Mevalonate 5-Diphosphate Decarboxylase Mevalonate Pathway Mevalonic Acid - analogs & derivatives Mevalonic Acid - chemistry Mevalonic Acid - metabolism MUTANTS Mutation, Missense MUTATIONS Organophosphorus Compounds - chemistry Organophosphorus Compounds - metabolism PHOSPHATES PHOSPHOTRANSFERASES PRECURSOR PROLINE RESOLUTION STAPHYLOCOCCUS Staphylococcus epidermidis - enzymology Staphylococcus epidermidis - genetics STREPTOCOCCUS Structure-Activity Relationship Substrate Specificity SUBSTRATES TARGETS |
title | Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structures%20of%20Staphylococcus%20epidermidis%20Mevalonate%20Diphosphate%20Decarboxylase%20Bound%20to%20Inhibitory%20Analogs%20Reveal%20New%20Insight%20into%20Substrate%20Binding%20and%20Catalysis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Barta,%20Michael%20L.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2011-07-08&rft.volume=286&rft.issue=27&rft.spage=23900&rft.epage=23910&rft.pages=23900-23910&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.242016&rft_dat=%3Cpubmed_osti_%3E21561869%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21561869&rft_els_id=S0021925819487413&rfr_iscdi=true |