G-Quadruplex-Binding Benzo[a]phenoxazines Down-Regulate c-KIT Expression in Human Gastric Carcinoma Cells

There is considerable interest in the structure and function of G-quadruplex nucleic acid secondary structures, their cellular functions, and their potential as therapeutic targets. G-Quadruplex sequence motifs are prevalent in gene promoter regions and it has been hypothesized that G-quadruplex str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2011-03, Vol.133 (8), p.2658-2663
Hauptverfasser: McLuckie, Keith I. E, Waller, Zoë A. E, Sanders, Deborah A, Alves, David, Rodriguez, Raphaël, Dash, Jyotirmayee, McKenzie, Grahame J, Venkitaraman, Ashok R, Balasubramanian, Shankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is considerable interest in the structure and function of G-quadruplex nucleic acid secondary structures, their cellular functions, and their potential as therapeutic targets. G-Quadruplex sequence motifs are prevalent in gene promoter regions and it has been hypothesized that G-quadruplex structure formation is associated with the transcriptional status of the downstream gene. Using a functional cell-based assay, we have identified two novel G-quadruplex ligands that reduce the transcription of a luciferase reporter driven from the G-quadruplex-containing c-KIT promoter. We have further shown that endogenous c-KIT expression in a human gastric carcinoma cell line is also reduced on treatment with these molecules. Biophysical analysis using surface plasmon resonance has shown that these molecules preferentially bind with high affinity to one of the two G-quadruplex sequences in the c-KIT promoter over double-stranded DNA. This work highlights the utility of cell-based reporter assays to identify new G-quadruplex binding molecules that modulate transcription and identifies benzo[a]phenoxazine derivatives as potential antitumor agents.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja109474c