NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity

The products of many bacterial non-ribosomal peptide synthetases (NRPS) are highly important secondary metabolites, including vancomycin and other antibiotics. The ability to predict substrate specificity of newly detected NRPS Adenylation (A-) domains by genome sequencing efforts is of great import...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2011-07, Vol.39 (suppl_2), p.W362-W367
Hauptverfasser: Röttig, Marc, Medema, Marnix H., Blin, Kai, Weber, Tilmann, Rausch, Christian, Kohlbacher, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page W367
container_issue suppl_2
container_start_page W362
container_title Nucleic acids research
container_volume 39
creator Röttig, Marc
Medema, Marnix H.
Blin, Kai
Weber, Tilmann
Rausch, Christian
Kohlbacher, Oliver
description The products of many bacterial non-ribosomal peptide synthetases (NRPS) are highly important secondary metabolites, including vancomycin and other antibiotics. The ability to predict substrate specificity of newly detected NRPS Adenylation (A-) domains by genome sequencing efforts is of great importance to identify and annotate new gene clusters that produce secondary metabolites. Prediction of A-domain specificity based on the sequence alone can be achieved through sequence signatures or, more accurately, through machine learning methods. We present an improved predictor, based on previous work (NRPSpredictor), that predicts A-domain specificity using Support Vector Machines on four hierarchical levels, ranging from gross physicochemical properties of an A-domain's substrates down to single amino acid substrates. The three more general levels are predicted with an F-measure better than 0.89 and the most detailed level with an average F-measure of 0.80. We also modeled the applicability domain of our predictor to estimate for new A-domains whether they lie in the applicability domain. Finally, since there are also NRPS that play an important role in natural products chemistry of fungi, such as peptaibols and cephalosporins, we added a predictor for fungal A-domains, which predicts gross physicochemical properties with an F-measure of 0.84. The service is available at http://nrps.informatik.uni-tuebingen.de/.
doi_str_mv 10.1093/nar/gkr323
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3125756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkr323</oup_id><sourcerecordid>884273115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-ee13ef5ef34be6351f8dd2da1a60f6a87da4027a3a0c5f936b0b181d27d0a9a93</originalsourceid><addsrcrecordid>eNqNkU1r3DAQQEVpaLZJLv0BxZcSKDirkSx_XAphaZPAkoR8nMXYGm3Vei1H8ibsv4-X3Yb0EnKawzweMzzGvgA_AV7JaYdhuvgbpJAf2ARkLtKsysVHNuGSqxR4Vu6zzzH-4RwyUNknti9AqRIKPmGXlzfXt30g45rBB5Fi8kR1Eik8UkisD8lu57pFskETNNStWxyc7xLjl-i6JPbUOOsaN6wP2Z7FNtLRbh6w-18_72bn6fzq7GJ2Ok8bxdWQEoEkq8jKrKZcKrClMcIgYM5tjmVhMOOiQIm8UbaSec1rKMGIwnCssJIH7MfW26_qJZmGuiFgq_vglhjW2qPT_28691sv_KOWIFSh8lFwvBME_7CiOOiliw21LXbkV1GXVQVKFNk7yDIThQRQI_l9SzbBxxjIvtwDXG9K6bGU3pYa4a-vP3hB_6UZgW9bwK_6t0TPEl-d9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884273115</pqid></control><display><type>article</type><title>NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Röttig, Marc ; Medema, Marnix H. ; Blin, Kai ; Weber, Tilmann ; Rausch, Christian ; Kohlbacher, Oliver</creator><creatorcontrib>Röttig, Marc ; Medema, Marnix H. ; Blin, Kai ; Weber, Tilmann ; Rausch, Christian ; Kohlbacher, Oliver</creatorcontrib><description>The products of many bacterial non-ribosomal peptide synthetases (NRPS) are highly important secondary metabolites, including vancomycin and other antibiotics. The ability to predict substrate specificity of newly detected NRPS Adenylation (A-) domains by genome sequencing efforts is of great importance to identify and annotate new gene clusters that produce secondary metabolites. Prediction of A-domain specificity based on the sequence alone can be achieved through sequence signatures or, more accurately, through machine learning methods. We present an improved predictor, based on previous work (NRPSpredictor), that predicts A-domain specificity using Support Vector Machines on four hierarchical levels, ranging from gross physicochemical properties of an A-domain's substrates down to single amino acid substrates. The three more general levels are predicted with an F-measure better than 0.89 and the most detailed level with an average F-measure of 0.80. We also modeled the applicability domain of our predictor to estimate for new A-domains whether they lie in the applicability domain. Finally, since there are also NRPS that play an important role in natural products chemistry of fungi, such as peptaibols and cephalosporins, we added a predictor for fungal A-domains, which predicts gross physicochemical properties with an F-measure of 0.84. The service is available at http://nrps.informatik.uni-tuebingen.de/.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkr323</identifier><identifier>PMID: 21558170</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Artificial Intelligence ; Catalytic Domain ; Internet ; Peptide Synthases - chemistry ; Software ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2011-07, Vol.39 (suppl_2), p.W362-W367</ispartof><rights>The Author(s) 2011. Published by Oxford University Press. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-ee13ef5ef34be6351f8dd2da1a60f6a87da4027a3a0c5f936b0b181d27d0a9a93</citedby><cites>FETCH-LOGICAL-c505t-ee13ef5ef34be6351f8dd2da1a60f6a87da4027a3a0c5f936b0b181d27d0a9a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125756/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125756/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21558170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Röttig, Marc</creatorcontrib><creatorcontrib>Medema, Marnix H.</creatorcontrib><creatorcontrib>Blin, Kai</creatorcontrib><creatorcontrib>Weber, Tilmann</creatorcontrib><creatorcontrib>Rausch, Christian</creatorcontrib><creatorcontrib>Kohlbacher, Oliver</creatorcontrib><title>NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The products of many bacterial non-ribosomal peptide synthetases (NRPS) are highly important secondary metabolites, including vancomycin and other antibiotics. The ability to predict substrate specificity of newly detected NRPS Adenylation (A-) domains by genome sequencing efforts is of great importance to identify and annotate new gene clusters that produce secondary metabolites. Prediction of A-domain specificity based on the sequence alone can be achieved through sequence signatures or, more accurately, through machine learning methods. We present an improved predictor, based on previous work (NRPSpredictor), that predicts A-domain specificity using Support Vector Machines on four hierarchical levels, ranging from gross physicochemical properties of an A-domain's substrates down to single amino acid substrates. The three more general levels are predicted with an F-measure better than 0.89 and the most detailed level with an average F-measure of 0.80. We also modeled the applicability domain of our predictor to estimate for new A-domains whether they lie in the applicability domain. Finally, since there are also NRPS that play an important role in natural products chemistry of fungi, such as peptaibols and cephalosporins, we added a predictor for fungal A-domains, which predicts gross physicochemical properties with an F-measure of 0.84. The service is available at http://nrps.informatik.uni-tuebingen.de/.</description><subject>Artificial Intelligence</subject><subject>Catalytic Domain</subject><subject>Internet</subject><subject>Peptide Synthases - chemistry</subject><subject>Software</subject><subject>Substrate Specificity</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1r3DAQQEVpaLZJLv0BxZcSKDirkSx_XAphaZPAkoR8nMXYGm3Vei1H8ibsv4-X3Yb0EnKawzweMzzGvgA_AV7JaYdhuvgbpJAf2ARkLtKsysVHNuGSqxR4Vu6zzzH-4RwyUNknti9AqRIKPmGXlzfXt30g45rBB5Fi8kR1Eik8UkisD8lu57pFskETNNStWxyc7xLjl-i6JPbUOOsaN6wP2Z7FNtLRbh6w-18_72bn6fzq7GJ2Ok8bxdWQEoEkq8jKrKZcKrClMcIgYM5tjmVhMOOiQIm8UbaSec1rKMGIwnCssJIH7MfW26_qJZmGuiFgq_vglhjW2qPT_28691sv_KOWIFSh8lFwvBME_7CiOOiliw21LXbkV1GXVQVKFNk7yDIThQRQI_l9SzbBxxjIvtwDXG9K6bGU3pYa4a-vP3hB_6UZgW9bwK_6t0TPEl-d9A</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Röttig, Marc</creator><creator>Medema, Marnix H.</creator><creator>Blin, Kai</creator><creator>Weber, Tilmann</creator><creator>Rausch, Christian</creator><creator>Kohlbacher, Oliver</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110701</creationdate><title>NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity</title><author>Röttig, Marc ; Medema, Marnix H. ; Blin, Kai ; Weber, Tilmann ; Rausch, Christian ; Kohlbacher, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-ee13ef5ef34be6351f8dd2da1a60f6a87da4027a3a0c5f936b0b181d27d0a9a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial Intelligence</topic><topic>Catalytic Domain</topic><topic>Internet</topic><topic>Peptide Synthases - chemistry</topic><topic>Software</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Röttig, Marc</creatorcontrib><creatorcontrib>Medema, Marnix H.</creatorcontrib><creatorcontrib>Blin, Kai</creatorcontrib><creatorcontrib>Weber, Tilmann</creatorcontrib><creatorcontrib>Rausch, Christian</creatorcontrib><creatorcontrib>Kohlbacher, Oliver</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Röttig, Marc</au><au>Medema, Marnix H.</au><au>Blin, Kai</au><au>Weber, Tilmann</au><au>Rausch, Christian</au><au>Kohlbacher, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>39</volume><issue>suppl_2</issue><spage>W362</spage><epage>W367</epage><pages>W362-W367</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The products of many bacterial non-ribosomal peptide synthetases (NRPS) are highly important secondary metabolites, including vancomycin and other antibiotics. The ability to predict substrate specificity of newly detected NRPS Adenylation (A-) domains by genome sequencing efforts is of great importance to identify and annotate new gene clusters that produce secondary metabolites. Prediction of A-domain specificity based on the sequence alone can be achieved through sequence signatures or, more accurately, through machine learning methods. We present an improved predictor, based on previous work (NRPSpredictor), that predicts A-domain specificity using Support Vector Machines on four hierarchical levels, ranging from gross physicochemical properties of an A-domain's substrates down to single amino acid substrates. The three more general levels are predicted with an F-measure better than 0.89 and the most detailed level with an average F-measure of 0.80. We also modeled the applicability domain of our predictor to estimate for new A-domains whether they lie in the applicability domain. Finally, since there are also NRPS that play an important role in natural products chemistry of fungi, such as peptaibols and cephalosporins, we added a predictor for fungal A-domains, which predicts gross physicochemical properties with an F-measure of 0.84. The service is available at http://nrps.informatik.uni-tuebingen.de/.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>21558170</pmid><doi>10.1093/nar/gkr323</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2011-07, Vol.39 (suppl_2), p.W362-W367
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3125756
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Artificial Intelligence
Catalytic Domain
Internet
Peptide Synthases - chemistry
Software
Substrate Specificity
title NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NRPSpredictor2-a%20web%20server%20for%20predicting%20NRPS%20adenylation%20domain%20specificity&rft.jtitle=Nucleic%20acids%20research&rft.au=R%C3%B6ttig,%20Marc&rft.date=2011-07-01&rft.volume=39&rft.issue=suppl_2&rft.spage=W362&rft.epage=W367&rft.pages=W362-W367&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkr323&rft_dat=%3Cproquest_pubme%3E884273115%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884273115&rft_id=info:pmid/21558170&rft_oup_id=10.1093/nar/gkr323&rfr_iscdi=true