Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling

Rolling leukocytes are exposed to different adhesion molecules and chemokines. Neutrophils rolling on E‐selectin induce integrin αLβ2‐mediated slow rolling on ICAM‐1 by activating a phospholipase C (PLC)γ2‐dependent and a separate PI3Kγ‐dependent pathway. E‐selectin‐signaling cooperates with chemoki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of immunology 2011-07, Vol.41 (7), p.2074-2085
Hauptverfasser: Stadtmann, Anika, Brinkhaus, Laura, Mueller, Helena, Rossaint, Jan, Bolomini‐Vittori, Matteo, Bergmeier, Wolfgang, Van Aken, Hugo, Wagner, Denisa D., Laudanna, Carlo, Ley, Klaus, Zarbock, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2085
container_issue 7
container_start_page 2074
container_title European journal of immunology
container_volume 41
creator Stadtmann, Anika
Brinkhaus, Laura
Mueller, Helena
Rossaint, Jan
Bolomini‐Vittori, Matteo
Bergmeier, Wolfgang
Van Aken, Hugo
Wagner, Denisa D.
Laudanna, Carlo
Ley, Klaus
Zarbock, Alexander
description Rolling leukocytes are exposed to different adhesion molecules and chemokines. Neutrophils rolling on E‐selectin induce integrin αLβ2‐mediated slow rolling on ICAM‐1 by activating a phospholipase C (PLC)γ2‐dependent and a separate PI3Kγ‐dependent pathway. E‐selectin‐signaling cooperates with chemokine signaling to recruit neutrophils into inflamed tissues. However, the distal signaling pathway linking PLCγ2 (Plcg2) to αLβ2‐activation is unknown. To identify this pathway, we used different Tat‐fusion‐mutants and gene‐deficient mice in intravital microscopy, autoperfused flow chamber, peritonitis, and biochemical studies. We found that the small GTPase Rap1 is activated following E‐selectin engagement and that blocking Rap1a in Pik3cg−/− mice by a dominant‐negative Tat‐fusion mutant completely abolished E‐selectin‐mediated slow rolling. We identified CalDAG‐GEFI (Rasgrp2) and p38 MAPK as key signaling intermediates between PLCγ2 and Rap1a. Gαi‐independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster muscle were completely abolished in Rasgrp2−/− mice. The physiological importance of CalDAG‐GEFI in E‐selectin‐dependent integrin activation is shown by complete inhibition of neutrophil recruitment into the inflamed peritoneal cavity of Rasgrp2−/− leukocytes treated with pertussis toxin to block Gαi‐signaling. Our data demonstrate that Rap1a activation by p38 MAPK and CalDAG‐GEFI is involved in E‐selectin‐dependent slow rolling and leukocyte recruitment.
doi_str_mv 10.1002/eji.201041196
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3124568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3012366151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5286-89d4c9cdc98aa3b5f44b9c1aecf804d228abdeb363e84c4c40af1e0a10e4c2243</originalsourceid><addsrcrecordid>eNp9kc9uEzEQhy0EomnhyBVZ4tDTFo_Xu_FekKKQpilFIARny-udLQ6Ovax3U-XGI_CMfZK6Sgl_DmgOHsnffJrRj5AXwM6AMf4a1_aMM2ACoCofkQkUHDIBAh6TCWMgMl5JdkSOY1wzxqqyqJ6SIw5CMg75hGw-6Q401WawWz3Y4Gm9o3Pt3s6Wtz9-LhfnK6p9Q7tc0vezj--ojdT6bXBbbFJDFwmK6DCN-9Q22KFv0A80unBDHY7fgtkNSPvgnPXXz8iTVruIzx_eE_LlfPF5fpFdfViu5rOrzBRclpmsGmEq05hKap3XRStEXRnQaFrJRMO51HWDdV7mKIVJxXQLyDQwFIZzkZ-QN3tvN9YbbEzaqNdOdb3d6H6ngrbq7x9vv6rrsFU5cFGUMglOHwR9-D5iHNTGRoPOaY9hjEpOBQMppvfkq3_IdRh7n65TkFf5tOC8LBKV7SnThxh7bA-7AFP3OaqUozrkmPiXfx5woH8Fl4DpHrixDnf_t6nF5eq3-g6Enqwq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1393752265</pqid></control><display><type>article</type><title>Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Stadtmann, Anika ; Brinkhaus, Laura ; Mueller, Helena ; Rossaint, Jan ; Bolomini‐Vittori, Matteo ; Bergmeier, Wolfgang ; Van Aken, Hugo ; Wagner, Denisa D. ; Laudanna, Carlo ; Ley, Klaus ; Zarbock, Alexander</creator><creatorcontrib>Stadtmann, Anika ; Brinkhaus, Laura ; Mueller, Helena ; Rossaint, Jan ; Bolomini‐Vittori, Matteo ; Bergmeier, Wolfgang ; Van Aken, Hugo ; Wagner, Denisa D. ; Laudanna, Carlo ; Ley, Klaus ; Zarbock, Alexander</creatorcontrib><description>Rolling leukocytes are exposed to different adhesion molecules and chemokines. Neutrophils rolling on E‐selectin induce integrin αLβ2‐mediated slow rolling on ICAM‐1 by activating a phospholipase C (PLC)γ2‐dependent and a separate PI3Kγ‐dependent pathway. E‐selectin‐signaling cooperates with chemokine signaling to recruit neutrophils into inflamed tissues. However, the distal signaling pathway linking PLCγ2 (Plcg2) to αLβ2‐activation is unknown. To identify this pathway, we used different Tat‐fusion‐mutants and gene‐deficient mice in intravital microscopy, autoperfused flow chamber, peritonitis, and biochemical studies. We found that the small GTPase Rap1 is activated following E‐selectin engagement and that blocking Rap1a in Pik3cg−/− mice by a dominant‐negative Tat‐fusion mutant completely abolished E‐selectin‐mediated slow rolling. We identified CalDAG‐GEFI (Rasgrp2) and p38 MAPK as key signaling intermediates between PLCγ2 and Rap1a. Gαi‐independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster muscle were completely abolished in Rasgrp2−/− mice. The physiological importance of CalDAG‐GEFI in E‐selectin‐dependent integrin activation is shown by complete inhibition of neutrophil recruitment into the inflamed peritoneal cavity of Rasgrp2−/− leukocytes treated with pertussis toxin to block Gαi‐signaling. Our data demonstrate that Rap1a activation by p38 MAPK and CalDAG‐GEFI is involved in E‐selectin‐dependent slow rolling and leukocyte recruitment.</description><identifier>ISSN: 0014-2980</identifier><identifier>EISSN: 1521-4141</identifier><identifier>DOI: 10.1002/eji.201041196</identifier><identifier>PMID: 21480213</identifier><identifier>CODEN: EJIMAF</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag</publisher><subject>Animals ; CalDAG‐GEFI ; Cells ; Class Ib Phosphatidylinositol 3-Kinase - genetics ; Class Ib Phosphatidylinositol 3-Kinase - metabolism ; E-Selectin - metabolism ; GTP-Binding Protein alpha Subunit, Gi2 - metabolism ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; Integrin ; Integrins - metabolism ; Leukocyte Rolling ; Leukocytes ; Lymphocyte Function-Associated Antigen-1 ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neutrophil Infiltration - genetics ; Neutrophils - physiology ; p38 ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peritonitis - immunology ; Peritonitis - metabolism ; Pertussis Toxin - pharmacology ; Phospholipase C gamma ; Proteins ; rap1 GTP-Binding Proteins - metabolism ; Rap1a ; Signal Transduction ; Signaling ; tat Gene Products, Human Immunodeficiency Virus - genetics ; tat Gene Products, Human Immunodeficiency Virus - metabolism ; Transendothelial and Transepithelial Migration</subject><ispartof>European journal of immunology, 2011-07, Vol.41 (7), p.2074-2085</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5286-89d4c9cdc98aa3b5f44b9c1aecf804d228abdeb363e84c4c40af1e0a10e4c2243</citedby><cites>FETCH-LOGICAL-c5286-89d4c9cdc98aa3b5f44b9c1aecf804d228abdeb363e84c4c40af1e0a10e4c2243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feji.201041196$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feji.201041196$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21480213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stadtmann, Anika</creatorcontrib><creatorcontrib>Brinkhaus, Laura</creatorcontrib><creatorcontrib>Mueller, Helena</creatorcontrib><creatorcontrib>Rossaint, Jan</creatorcontrib><creatorcontrib>Bolomini‐Vittori, Matteo</creatorcontrib><creatorcontrib>Bergmeier, Wolfgang</creatorcontrib><creatorcontrib>Van Aken, Hugo</creatorcontrib><creatorcontrib>Wagner, Denisa D.</creatorcontrib><creatorcontrib>Laudanna, Carlo</creatorcontrib><creatorcontrib>Ley, Klaus</creatorcontrib><creatorcontrib>Zarbock, Alexander</creatorcontrib><title>Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling</title><title>European journal of immunology</title><addtitle>Eur J Immunol</addtitle><description>Rolling leukocytes are exposed to different adhesion molecules and chemokines. Neutrophils rolling on E‐selectin induce integrin αLβ2‐mediated slow rolling on ICAM‐1 by activating a phospholipase C (PLC)γ2‐dependent and a separate PI3Kγ‐dependent pathway. E‐selectin‐signaling cooperates with chemokine signaling to recruit neutrophils into inflamed tissues. However, the distal signaling pathway linking PLCγ2 (Plcg2) to αLβ2‐activation is unknown. To identify this pathway, we used different Tat‐fusion‐mutants and gene‐deficient mice in intravital microscopy, autoperfused flow chamber, peritonitis, and biochemical studies. We found that the small GTPase Rap1 is activated following E‐selectin engagement and that blocking Rap1a in Pik3cg−/− mice by a dominant‐negative Tat‐fusion mutant completely abolished E‐selectin‐mediated slow rolling. We identified CalDAG‐GEFI (Rasgrp2) and p38 MAPK as key signaling intermediates between PLCγ2 and Rap1a. Gαi‐independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster muscle were completely abolished in Rasgrp2−/− mice. The physiological importance of CalDAG‐GEFI in E‐selectin‐dependent integrin activation is shown by complete inhibition of neutrophil recruitment into the inflamed peritoneal cavity of Rasgrp2−/− leukocytes treated with pertussis toxin to block Gαi‐signaling. Our data demonstrate that Rap1a activation by p38 MAPK and CalDAG‐GEFI is involved in E‐selectin‐dependent slow rolling and leukocyte recruitment.</description><subject>Animals</subject><subject>CalDAG‐GEFI</subject><subject>Cells</subject><subject>Class Ib Phosphatidylinositol 3-Kinase - genetics</subject><subject>Class Ib Phosphatidylinositol 3-Kinase - metabolism</subject><subject>E-Selectin - metabolism</subject><subject>GTP-Binding Protein alpha Subunit, Gi2 - metabolism</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Integrin</subject><subject>Integrins - metabolism</subject><subject>Leukocyte Rolling</subject><subject>Leukocytes</subject><subject>Lymphocyte Function-Associated Antigen-1</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neutrophil Infiltration - genetics</subject><subject>Neutrophils - physiology</subject><subject>p38</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peritonitis - immunology</subject><subject>Peritonitis - metabolism</subject><subject>Pertussis Toxin - pharmacology</subject><subject>Phospholipase C gamma</subject><subject>Proteins</subject><subject>rap1 GTP-Binding Proteins - metabolism</subject><subject>Rap1a</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>tat Gene Products, Human Immunodeficiency Virus - genetics</subject><subject>tat Gene Products, Human Immunodeficiency Virus - metabolism</subject><subject>Transendothelial and Transepithelial Migration</subject><issn>0014-2980</issn><issn>1521-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9uEzEQhy0EomnhyBVZ4tDTFo_Xu_FekKKQpilFIARny-udLQ6Ovax3U-XGI_CMfZK6Sgl_DmgOHsnffJrRj5AXwM6AMf4a1_aMM2ACoCofkQkUHDIBAh6TCWMgMl5JdkSOY1wzxqqyqJ6SIw5CMg75hGw-6Q401WawWz3Y4Gm9o3Pt3s6Wtz9-LhfnK6p9Q7tc0vezj--ojdT6bXBbbFJDFwmK6DCN-9Q22KFv0A80unBDHY7fgtkNSPvgnPXXz8iTVruIzx_eE_LlfPF5fpFdfViu5rOrzBRclpmsGmEq05hKap3XRStEXRnQaFrJRMO51HWDdV7mKIVJxXQLyDQwFIZzkZ-QN3tvN9YbbEzaqNdOdb3d6H6ngrbq7x9vv6rrsFU5cFGUMglOHwR9-D5iHNTGRoPOaY9hjEpOBQMppvfkq3_IdRh7n65TkFf5tOC8LBKV7SnThxh7bA-7AFP3OaqUozrkmPiXfx5woH8Fl4DpHrixDnf_t6nF5eq3-g6Enqwq</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Stadtmann, Anika</creator><creator>Brinkhaus, Laura</creator><creator>Mueller, Helena</creator><creator>Rossaint, Jan</creator><creator>Bolomini‐Vittori, Matteo</creator><creator>Bergmeier, Wolfgang</creator><creator>Van Aken, Hugo</creator><creator>Wagner, Denisa D.</creator><creator>Laudanna, Carlo</creator><creator>Ley, Klaus</creator><creator>Zarbock, Alexander</creator><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201107</creationdate><title>Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling</title><author>Stadtmann, Anika ; Brinkhaus, Laura ; Mueller, Helena ; Rossaint, Jan ; Bolomini‐Vittori, Matteo ; Bergmeier, Wolfgang ; Van Aken, Hugo ; Wagner, Denisa D. ; Laudanna, Carlo ; Ley, Klaus ; Zarbock, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5286-89d4c9cdc98aa3b5f44b9c1aecf804d228abdeb363e84c4c40af1e0a10e4c2243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>CalDAG‐GEFI</topic><topic>Cells</topic><topic>Class Ib Phosphatidylinositol 3-Kinase - genetics</topic><topic>Class Ib Phosphatidylinositol 3-Kinase - metabolism</topic><topic>E-Selectin - metabolism</topic><topic>GTP-Binding Protein alpha Subunit, Gi2 - metabolism</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Integrin</topic><topic>Integrins - metabolism</topic><topic>Leukocyte Rolling</topic><topic>Leukocytes</topic><topic>Lymphocyte Function-Associated Antigen-1</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neutrophil Infiltration - genetics</topic><topic>Neutrophils - physiology</topic><topic>p38</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peritonitis - immunology</topic><topic>Peritonitis - metabolism</topic><topic>Pertussis Toxin - pharmacology</topic><topic>Phospholipase C gamma</topic><topic>Proteins</topic><topic>rap1 GTP-Binding Proteins - metabolism</topic><topic>Rap1a</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>tat Gene Products, Human Immunodeficiency Virus - genetics</topic><topic>tat Gene Products, Human Immunodeficiency Virus - metabolism</topic><topic>Transendothelial and Transepithelial Migration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stadtmann, Anika</creatorcontrib><creatorcontrib>Brinkhaus, Laura</creatorcontrib><creatorcontrib>Mueller, Helena</creatorcontrib><creatorcontrib>Rossaint, Jan</creatorcontrib><creatorcontrib>Bolomini‐Vittori, Matteo</creatorcontrib><creatorcontrib>Bergmeier, Wolfgang</creatorcontrib><creatorcontrib>Van Aken, Hugo</creatorcontrib><creatorcontrib>Wagner, Denisa D.</creatorcontrib><creatorcontrib>Laudanna, Carlo</creatorcontrib><creatorcontrib>Ley, Klaus</creatorcontrib><creatorcontrib>Zarbock, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stadtmann, Anika</au><au>Brinkhaus, Laura</au><au>Mueller, Helena</au><au>Rossaint, Jan</au><au>Bolomini‐Vittori, Matteo</au><au>Bergmeier, Wolfgang</au><au>Van Aken, Hugo</au><au>Wagner, Denisa D.</au><au>Laudanna, Carlo</au><au>Ley, Klaus</au><au>Zarbock, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling</atitle><jtitle>European journal of immunology</jtitle><addtitle>Eur J Immunol</addtitle><date>2011-07</date><risdate>2011</risdate><volume>41</volume><issue>7</issue><spage>2074</spage><epage>2085</epage><pages>2074-2085</pages><issn>0014-2980</issn><eissn>1521-4141</eissn><coden>EJIMAF</coden><abstract>Rolling leukocytes are exposed to different adhesion molecules and chemokines. Neutrophils rolling on E‐selectin induce integrin αLβ2‐mediated slow rolling on ICAM‐1 by activating a phospholipase C (PLC)γ2‐dependent and a separate PI3Kγ‐dependent pathway. E‐selectin‐signaling cooperates with chemokine signaling to recruit neutrophils into inflamed tissues. However, the distal signaling pathway linking PLCγ2 (Plcg2) to αLβ2‐activation is unknown. To identify this pathway, we used different Tat‐fusion‐mutants and gene‐deficient mice in intravital microscopy, autoperfused flow chamber, peritonitis, and biochemical studies. We found that the small GTPase Rap1 is activated following E‐selectin engagement and that blocking Rap1a in Pik3cg−/− mice by a dominant‐negative Tat‐fusion mutant completely abolished E‐selectin‐mediated slow rolling. We identified CalDAG‐GEFI (Rasgrp2) and p38 MAPK as key signaling intermediates between PLCγ2 and Rap1a. Gαi‐independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster muscle were completely abolished in Rasgrp2−/− mice. The physiological importance of CalDAG‐GEFI in E‐selectin‐dependent integrin activation is shown by complete inhibition of neutrophil recruitment into the inflamed peritoneal cavity of Rasgrp2−/− leukocytes treated with pertussis toxin to block Gαi‐signaling. Our data demonstrate that Rap1a activation by p38 MAPK and CalDAG‐GEFI is involved in E‐selectin‐dependent slow rolling and leukocyte recruitment.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag</pub><pmid>21480213</pmid><doi>10.1002/eji.201041196</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-2980
ispartof European journal of immunology, 2011-07, Vol.41 (7), p.2074-2085
issn 0014-2980
1521-4141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3124568
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects Animals
CalDAG‐GEFI
Cells
Class Ib Phosphatidylinositol 3-Kinase - genetics
Class Ib Phosphatidylinositol 3-Kinase - metabolism
E-Selectin - metabolism
GTP-Binding Protein alpha Subunit, Gi2 - metabolism
Guanine Nucleotide Exchange Factors - genetics
Guanine Nucleotide Exchange Factors - metabolism
Integrin
Integrins - metabolism
Leukocyte Rolling
Leukocytes
Lymphocyte Function-Associated Antigen-1
Mice
Mice, Inbred C57BL
Mice, Knockout
Neutrophil Infiltration - genetics
Neutrophils - physiology
p38
p38 Mitogen-Activated Protein Kinases - metabolism
Peritonitis - immunology
Peritonitis - metabolism
Pertussis Toxin - pharmacology
Phospholipase C gamma
Proteins
rap1 GTP-Binding Proteins - metabolism
Rap1a
Signal Transduction
Signaling
tat Gene Products, Human Immunodeficiency Virus - genetics
tat Gene Products, Human Immunodeficiency Virus - metabolism
Transendothelial and Transepithelial Migration
title Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rap1a%20activation%20by%20CalDAG%E2%80%90GEFI%20and%20p38%20MAPK%20is%20involved%20in%20E%E2%80%90selectin%E2%80%90dependent%20slow%20leukocyte%20rolling&rft.jtitle=European%20journal%20of%20immunology&rft.au=Stadtmann,%20Anika&rft.date=2011-07&rft.volume=41&rft.issue=7&rft.spage=2074&rft.epage=2085&rft.pages=2074-2085&rft.issn=0014-2980&rft.eissn=1521-4141&rft.coden=EJIMAF&rft_id=info:doi/10.1002/eji.201041196&rft_dat=%3Cproquest_pubme%3E3012366151%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1393752265&rft_id=info:pmid/21480213&rfr_iscdi=true