Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling
Rolling leukocytes are exposed to different adhesion molecules and chemokines. Neutrophils rolling on E‐selectin induce integrin αLβ2‐mediated slow rolling on ICAM‐1 by activating a phospholipase C (PLC)γ2‐dependent and a separate PI3Kγ‐dependent pathway. E‐selectin‐signaling cooperates with chemoki...
Gespeichert in:
Veröffentlicht in: | European journal of immunology 2011-07, Vol.41 (7), p.2074-2085 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2085 |
---|---|
container_issue | 7 |
container_start_page | 2074 |
container_title | European journal of immunology |
container_volume | 41 |
creator | Stadtmann, Anika Brinkhaus, Laura Mueller, Helena Rossaint, Jan Bolomini‐Vittori, Matteo Bergmeier, Wolfgang Van Aken, Hugo Wagner, Denisa D. Laudanna, Carlo Ley, Klaus Zarbock, Alexander |
description | Rolling leukocytes are exposed to different adhesion molecules and chemokines. Neutrophils rolling on E‐selectin induce integrin αLβ2‐mediated slow rolling on ICAM‐1 by activating a phospholipase C (PLC)γ2‐dependent and a separate PI3Kγ‐dependent pathway. E‐selectin‐signaling cooperates with chemokine signaling to recruit neutrophils into inflamed tissues. However, the distal signaling pathway linking PLCγ2 (Plcg2) to αLβ2‐activation is unknown. To identify this pathway, we used different Tat‐fusion‐mutants and gene‐deficient mice in intravital microscopy, autoperfused flow chamber, peritonitis, and biochemical studies. We found that the small GTPase Rap1 is activated following E‐selectin engagement and that blocking Rap1a in Pik3cg−/− mice by a dominant‐negative Tat‐fusion mutant completely abolished E‐selectin‐mediated slow rolling. We identified CalDAG‐GEFI (Rasgrp2) and p38 MAPK as key signaling intermediates between PLCγ2 and Rap1a. Gαi‐independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster muscle were completely abolished in Rasgrp2−/− mice. The physiological importance of CalDAG‐GEFI in E‐selectin‐dependent integrin activation is shown by complete inhibition of neutrophil recruitment into the inflamed peritoneal cavity of Rasgrp2−/− leukocytes treated with pertussis toxin to block Gαi‐signaling. Our data demonstrate that Rap1a activation by p38 MAPK and CalDAG‐GEFI is involved in E‐selectin‐dependent slow rolling and leukocyte recruitment. |
doi_str_mv | 10.1002/eji.201041196 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3124568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3012366151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5286-89d4c9cdc98aa3b5f44b9c1aecf804d228abdeb363e84c4c40af1e0a10e4c2243</originalsourceid><addsrcrecordid>eNp9kc9uEzEQhy0EomnhyBVZ4tDTFo_Xu_FekKKQpilFIARny-udLQ6Ovax3U-XGI_CMfZK6Sgl_DmgOHsnffJrRj5AXwM6AMf4a1_aMM2ACoCofkQkUHDIBAh6TCWMgMl5JdkSOY1wzxqqyqJ6SIw5CMg75hGw-6Q401WawWz3Y4Gm9o3Pt3s6Wtz9-LhfnK6p9Q7tc0vezj--ojdT6bXBbbFJDFwmK6DCN-9Q22KFv0A80unBDHY7fgtkNSPvgnPXXz8iTVruIzx_eE_LlfPF5fpFdfViu5rOrzBRclpmsGmEq05hKap3XRStEXRnQaFrJRMO51HWDdV7mKIVJxXQLyDQwFIZzkZ-QN3tvN9YbbEzaqNdOdb3d6H6ngrbq7x9vv6rrsFU5cFGUMglOHwR9-D5iHNTGRoPOaY9hjEpOBQMppvfkq3_IdRh7n65TkFf5tOC8LBKV7SnThxh7bA-7AFP3OaqUozrkmPiXfx5woH8Fl4DpHrixDnf_t6nF5eq3-g6Enqwq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1393752265</pqid></control><display><type>article</type><title>Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Stadtmann, Anika ; Brinkhaus, Laura ; Mueller, Helena ; Rossaint, Jan ; Bolomini‐Vittori, Matteo ; Bergmeier, Wolfgang ; Van Aken, Hugo ; Wagner, Denisa D. ; Laudanna, Carlo ; Ley, Klaus ; Zarbock, Alexander</creator><creatorcontrib>Stadtmann, Anika ; Brinkhaus, Laura ; Mueller, Helena ; Rossaint, Jan ; Bolomini‐Vittori, Matteo ; Bergmeier, Wolfgang ; Van Aken, Hugo ; Wagner, Denisa D. ; Laudanna, Carlo ; Ley, Klaus ; Zarbock, Alexander</creatorcontrib><description>Rolling leukocytes are exposed to different adhesion molecules and chemokines. Neutrophils rolling on E‐selectin induce integrin αLβ2‐mediated slow rolling on ICAM‐1 by activating a phospholipase C (PLC)γ2‐dependent and a separate PI3Kγ‐dependent pathway. E‐selectin‐signaling cooperates with chemokine signaling to recruit neutrophils into inflamed tissues. However, the distal signaling pathway linking PLCγ2 (Plcg2) to αLβ2‐activation is unknown. To identify this pathway, we used different Tat‐fusion‐mutants and gene‐deficient mice in intravital microscopy, autoperfused flow chamber, peritonitis, and biochemical studies. We found that the small GTPase Rap1 is activated following E‐selectin engagement and that blocking Rap1a in Pik3cg−/− mice by a dominant‐negative Tat‐fusion mutant completely abolished E‐selectin‐mediated slow rolling. We identified CalDAG‐GEFI (Rasgrp2) and p38 MAPK as key signaling intermediates between PLCγ2 and Rap1a. Gαi‐independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster muscle were completely abolished in Rasgrp2−/− mice. The physiological importance of CalDAG‐GEFI in E‐selectin‐dependent integrin activation is shown by complete inhibition of neutrophil recruitment into the inflamed peritoneal cavity of Rasgrp2−/− leukocytes treated with pertussis toxin to block Gαi‐signaling. Our data demonstrate that Rap1a activation by p38 MAPK and CalDAG‐GEFI is involved in E‐selectin‐dependent slow rolling and leukocyte recruitment.</description><identifier>ISSN: 0014-2980</identifier><identifier>EISSN: 1521-4141</identifier><identifier>DOI: 10.1002/eji.201041196</identifier><identifier>PMID: 21480213</identifier><identifier>CODEN: EJIMAF</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag</publisher><subject>Animals ; CalDAG‐GEFI ; Cells ; Class Ib Phosphatidylinositol 3-Kinase - genetics ; Class Ib Phosphatidylinositol 3-Kinase - metabolism ; E-Selectin - metabolism ; GTP-Binding Protein alpha Subunit, Gi2 - metabolism ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; Integrin ; Integrins - metabolism ; Leukocyte Rolling ; Leukocytes ; Lymphocyte Function-Associated Antigen-1 ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neutrophil Infiltration - genetics ; Neutrophils - physiology ; p38 ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peritonitis - immunology ; Peritonitis - metabolism ; Pertussis Toxin - pharmacology ; Phospholipase C gamma ; Proteins ; rap1 GTP-Binding Proteins - metabolism ; Rap1a ; Signal Transduction ; Signaling ; tat Gene Products, Human Immunodeficiency Virus - genetics ; tat Gene Products, Human Immunodeficiency Virus - metabolism ; Transendothelial and Transepithelial Migration</subject><ispartof>European journal of immunology, 2011-07, Vol.41 (7), p.2074-2085</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5286-89d4c9cdc98aa3b5f44b9c1aecf804d228abdeb363e84c4c40af1e0a10e4c2243</citedby><cites>FETCH-LOGICAL-c5286-89d4c9cdc98aa3b5f44b9c1aecf804d228abdeb363e84c4c40af1e0a10e4c2243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feji.201041196$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feji.201041196$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21480213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stadtmann, Anika</creatorcontrib><creatorcontrib>Brinkhaus, Laura</creatorcontrib><creatorcontrib>Mueller, Helena</creatorcontrib><creatorcontrib>Rossaint, Jan</creatorcontrib><creatorcontrib>Bolomini‐Vittori, Matteo</creatorcontrib><creatorcontrib>Bergmeier, Wolfgang</creatorcontrib><creatorcontrib>Van Aken, Hugo</creatorcontrib><creatorcontrib>Wagner, Denisa D.</creatorcontrib><creatorcontrib>Laudanna, Carlo</creatorcontrib><creatorcontrib>Ley, Klaus</creatorcontrib><creatorcontrib>Zarbock, Alexander</creatorcontrib><title>Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling</title><title>European journal of immunology</title><addtitle>Eur J Immunol</addtitle><description>Rolling leukocytes are exposed to different adhesion molecules and chemokines. Neutrophils rolling on E‐selectin induce integrin αLβ2‐mediated slow rolling on ICAM‐1 by activating a phospholipase C (PLC)γ2‐dependent and a separate PI3Kγ‐dependent pathway. E‐selectin‐signaling cooperates with chemokine signaling to recruit neutrophils into inflamed tissues. However, the distal signaling pathway linking PLCγ2 (Plcg2) to αLβ2‐activation is unknown. To identify this pathway, we used different Tat‐fusion‐mutants and gene‐deficient mice in intravital microscopy, autoperfused flow chamber, peritonitis, and biochemical studies. We found that the small GTPase Rap1 is activated following E‐selectin engagement and that blocking Rap1a in Pik3cg−/− mice by a dominant‐negative Tat‐fusion mutant completely abolished E‐selectin‐mediated slow rolling. We identified CalDAG‐GEFI (Rasgrp2) and p38 MAPK as key signaling intermediates between PLCγ2 and Rap1a. Gαi‐independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster muscle were completely abolished in Rasgrp2−/− mice. The physiological importance of CalDAG‐GEFI in E‐selectin‐dependent integrin activation is shown by complete inhibition of neutrophil recruitment into the inflamed peritoneal cavity of Rasgrp2−/− leukocytes treated with pertussis toxin to block Gαi‐signaling. Our data demonstrate that Rap1a activation by p38 MAPK and CalDAG‐GEFI is involved in E‐selectin‐dependent slow rolling and leukocyte recruitment.</description><subject>Animals</subject><subject>CalDAG‐GEFI</subject><subject>Cells</subject><subject>Class Ib Phosphatidylinositol 3-Kinase - genetics</subject><subject>Class Ib Phosphatidylinositol 3-Kinase - metabolism</subject><subject>E-Selectin - metabolism</subject><subject>GTP-Binding Protein alpha Subunit, Gi2 - metabolism</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Integrin</subject><subject>Integrins - metabolism</subject><subject>Leukocyte Rolling</subject><subject>Leukocytes</subject><subject>Lymphocyte Function-Associated Antigen-1</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neutrophil Infiltration - genetics</subject><subject>Neutrophils - physiology</subject><subject>p38</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peritonitis - immunology</subject><subject>Peritonitis - metabolism</subject><subject>Pertussis Toxin - pharmacology</subject><subject>Phospholipase C gamma</subject><subject>Proteins</subject><subject>rap1 GTP-Binding Proteins - metabolism</subject><subject>Rap1a</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>tat Gene Products, Human Immunodeficiency Virus - genetics</subject><subject>tat Gene Products, Human Immunodeficiency Virus - metabolism</subject><subject>Transendothelial and Transepithelial Migration</subject><issn>0014-2980</issn><issn>1521-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9uEzEQhy0EomnhyBVZ4tDTFo_Xu_FekKKQpilFIARny-udLQ6Ovax3U-XGI_CMfZK6Sgl_DmgOHsnffJrRj5AXwM6AMf4a1_aMM2ACoCofkQkUHDIBAh6TCWMgMl5JdkSOY1wzxqqyqJ6SIw5CMg75hGw-6Q401WawWz3Y4Gm9o3Pt3s6Wtz9-LhfnK6p9Q7tc0vezj--ojdT6bXBbbFJDFwmK6DCN-9Q22KFv0A80unBDHY7fgtkNSPvgnPXXz8iTVruIzx_eE_LlfPF5fpFdfViu5rOrzBRclpmsGmEq05hKap3XRStEXRnQaFrJRMO51HWDdV7mKIVJxXQLyDQwFIZzkZ-QN3tvN9YbbEzaqNdOdb3d6H6ngrbq7x9vv6rrsFU5cFGUMglOHwR9-D5iHNTGRoPOaY9hjEpOBQMppvfkq3_IdRh7n65TkFf5tOC8LBKV7SnThxh7bA-7AFP3OaqUozrkmPiXfx5woH8Fl4DpHrixDnf_t6nF5eq3-g6Enqwq</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Stadtmann, Anika</creator><creator>Brinkhaus, Laura</creator><creator>Mueller, Helena</creator><creator>Rossaint, Jan</creator><creator>Bolomini‐Vittori, Matteo</creator><creator>Bergmeier, Wolfgang</creator><creator>Van Aken, Hugo</creator><creator>Wagner, Denisa D.</creator><creator>Laudanna, Carlo</creator><creator>Ley, Klaus</creator><creator>Zarbock, Alexander</creator><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201107</creationdate><title>Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling</title><author>Stadtmann, Anika ; Brinkhaus, Laura ; Mueller, Helena ; Rossaint, Jan ; Bolomini‐Vittori, Matteo ; Bergmeier, Wolfgang ; Van Aken, Hugo ; Wagner, Denisa D. ; Laudanna, Carlo ; Ley, Klaus ; Zarbock, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5286-89d4c9cdc98aa3b5f44b9c1aecf804d228abdeb363e84c4c40af1e0a10e4c2243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>CalDAG‐GEFI</topic><topic>Cells</topic><topic>Class Ib Phosphatidylinositol 3-Kinase - genetics</topic><topic>Class Ib Phosphatidylinositol 3-Kinase - metabolism</topic><topic>E-Selectin - metabolism</topic><topic>GTP-Binding Protein alpha Subunit, Gi2 - metabolism</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Integrin</topic><topic>Integrins - metabolism</topic><topic>Leukocyte Rolling</topic><topic>Leukocytes</topic><topic>Lymphocyte Function-Associated Antigen-1</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neutrophil Infiltration - genetics</topic><topic>Neutrophils - physiology</topic><topic>p38</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peritonitis - immunology</topic><topic>Peritonitis - metabolism</topic><topic>Pertussis Toxin - pharmacology</topic><topic>Phospholipase C gamma</topic><topic>Proteins</topic><topic>rap1 GTP-Binding Proteins - metabolism</topic><topic>Rap1a</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>tat Gene Products, Human Immunodeficiency Virus - genetics</topic><topic>tat Gene Products, Human Immunodeficiency Virus - metabolism</topic><topic>Transendothelial and Transepithelial Migration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stadtmann, Anika</creatorcontrib><creatorcontrib>Brinkhaus, Laura</creatorcontrib><creatorcontrib>Mueller, Helena</creatorcontrib><creatorcontrib>Rossaint, Jan</creatorcontrib><creatorcontrib>Bolomini‐Vittori, Matteo</creatorcontrib><creatorcontrib>Bergmeier, Wolfgang</creatorcontrib><creatorcontrib>Van Aken, Hugo</creatorcontrib><creatorcontrib>Wagner, Denisa D.</creatorcontrib><creatorcontrib>Laudanna, Carlo</creatorcontrib><creatorcontrib>Ley, Klaus</creatorcontrib><creatorcontrib>Zarbock, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stadtmann, Anika</au><au>Brinkhaus, Laura</au><au>Mueller, Helena</au><au>Rossaint, Jan</au><au>Bolomini‐Vittori, Matteo</au><au>Bergmeier, Wolfgang</au><au>Van Aken, Hugo</au><au>Wagner, Denisa D.</au><au>Laudanna, Carlo</au><au>Ley, Klaus</au><au>Zarbock, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling</atitle><jtitle>European journal of immunology</jtitle><addtitle>Eur J Immunol</addtitle><date>2011-07</date><risdate>2011</risdate><volume>41</volume><issue>7</issue><spage>2074</spage><epage>2085</epage><pages>2074-2085</pages><issn>0014-2980</issn><eissn>1521-4141</eissn><coden>EJIMAF</coden><abstract>Rolling leukocytes are exposed to different adhesion molecules and chemokines. Neutrophils rolling on E‐selectin induce integrin αLβ2‐mediated slow rolling on ICAM‐1 by activating a phospholipase C (PLC)γ2‐dependent and a separate PI3Kγ‐dependent pathway. E‐selectin‐signaling cooperates with chemokine signaling to recruit neutrophils into inflamed tissues. However, the distal signaling pathway linking PLCγ2 (Plcg2) to αLβ2‐activation is unknown. To identify this pathway, we used different Tat‐fusion‐mutants and gene‐deficient mice in intravital microscopy, autoperfused flow chamber, peritonitis, and biochemical studies. We found that the small GTPase Rap1 is activated following E‐selectin engagement and that blocking Rap1a in Pik3cg−/− mice by a dominant‐negative Tat‐fusion mutant completely abolished E‐selectin‐mediated slow rolling. We identified CalDAG‐GEFI (Rasgrp2) and p38 MAPK as key signaling intermediates between PLCγ2 and Rap1a. Gαi‐independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster muscle were completely abolished in Rasgrp2−/− mice. The physiological importance of CalDAG‐GEFI in E‐selectin‐dependent integrin activation is shown by complete inhibition of neutrophil recruitment into the inflamed peritoneal cavity of Rasgrp2−/− leukocytes treated with pertussis toxin to block Gαi‐signaling. Our data demonstrate that Rap1a activation by p38 MAPK and CalDAG‐GEFI is involved in E‐selectin‐dependent slow rolling and leukocyte recruitment.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag</pub><pmid>21480213</pmid><doi>10.1002/eji.201041196</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-2980 |
ispartof | European journal of immunology, 2011-07, Vol.41 (7), p.2074-2085 |
issn | 0014-2980 1521-4141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3124568 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection) |
subjects | Animals CalDAG‐GEFI Cells Class Ib Phosphatidylinositol 3-Kinase - genetics Class Ib Phosphatidylinositol 3-Kinase - metabolism E-Selectin - metabolism GTP-Binding Protein alpha Subunit, Gi2 - metabolism Guanine Nucleotide Exchange Factors - genetics Guanine Nucleotide Exchange Factors - metabolism Integrin Integrins - metabolism Leukocyte Rolling Leukocytes Lymphocyte Function-Associated Antigen-1 Mice Mice, Inbred C57BL Mice, Knockout Neutrophil Infiltration - genetics Neutrophils - physiology p38 p38 Mitogen-Activated Protein Kinases - metabolism Peritonitis - immunology Peritonitis - metabolism Pertussis Toxin - pharmacology Phospholipase C gamma Proteins rap1 GTP-Binding Proteins - metabolism Rap1a Signal Transduction Signaling tat Gene Products, Human Immunodeficiency Virus - genetics tat Gene Products, Human Immunodeficiency Virus - metabolism Transendothelial and Transepithelial Migration |
title | Rap1a activation by CalDAG‐GEFI and p38 MAPK is involved in E‐selectin‐dependent slow leukocyte rolling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rap1a%20activation%20by%20CalDAG%E2%80%90GEFI%20and%20p38%20MAPK%20is%20involved%20in%20E%E2%80%90selectin%E2%80%90dependent%20slow%20leukocyte%20rolling&rft.jtitle=European%20journal%20of%20immunology&rft.au=Stadtmann,%20Anika&rft.date=2011-07&rft.volume=41&rft.issue=7&rft.spage=2074&rft.epage=2085&rft.pages=2074-2085&rft.issn=0014-2980&rft.eissn=1521-4141&rft.coden=EJIMAF&rft_id=info:doi/10.1002/eji.201041196&rft_dat=%3Cproquest_pubme%3E3012366151%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1393752265&rft_id=info:pmid/21480213&rfr_iscdi=true |