RNA Binding Targets Aminoacyl-tRNA Synthetases to Translating Ribosomes
Here, we examine tRNA-aminoacyl synthetase (ARS) localization in protein synthesis. Proteomics reveals that ten of the twenty cytosolic ARSs associate with ribosomes in sucrose gradients: phenylalanyl-RS (FRS), and the 9 ARSs that form the multi-ARS complex (MSC). Using the ribopuromycylation method...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2011-06, Vol.286 (23), p.20688-20700 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20700 |
---|---|
container_issue | 23 |
container_start_page | 20688 |
container_title | The Journal of biological chemistry |
container_volume | 286 |
creator | David, Alexandre Netzer, Nir Strader, Michael Brad Das, Suman R. Chen, Cai Yun Gibbs, James Pierre, Philippe Bennink, Jack R. Yewdell, Jonathan W. |
description | Here, we examine tRNA-aminoacyl synthetase (ARS) localization in protein synthesis. Proteomics reveals that ten of the twenty cytosolic ARSs associate with ribosomes in sucrose gradients: phenylalanyl-RS (FRS), and the 9 ARSs that form the multi-ARS complex (MSC). Using the ribopuromycylation method (RPM) for localizing intracellular translation, we show that FRS and the MSC, and to a lesser extent other ARSs, localize to translating ribosomes, most strikingly when translation is restricted to poxvirus or alphavirus factories in infected cells. Immunoproximity fluorescence indicates close proximity between MSC and the ribosome. Stress induced-translational shutdown recruits the MSC to stress-granules, a depot for mRNA and translation components. MSC binding to mRNA provides a facile explanation for its delivery to translating ribosomes and stress granules. These findings, along with the abundance of the MSC (9 × 106 copies per cell, roughly equimolar with ribosomes), is consistent with the idea that MSC specificity, recently reported to vary with cellular stress (Netzer, N., Goodenbour, J. M., David, A., Dittmar, K. A., Jones, R. B., Schneider, J. R., Boone, D., Eves, E. M., Rosner, M. R., Gibbs, J. S., Embry, A., Dolan, B., Das, S., Hickman, H. D., Berglund, P., Bennink, J. R., Yewdell, J. W., and Pan, T. (2009) Nature 462, 522–526) can be modulated at the level of individual mRNAs to modify decoding of specific gene products. |
doi_str_mv | 10.1074/jbc.M110.209452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3121505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819491345</els_id><sourcerecordid>870546761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-432c02ca9731c3dd11ef787c72d1c0eed7f70b4651cc74ea851886b68daffd283</originalsourceid><addsrcrecordid>eNp1kc9rFDEcxYModls9e5O5iYdp8838SOYirMW2wqrQbqG3kEm-s5syk7RJdmH_e2eYtqhgLiF5n_e-JI-QD0BPgfLy7L7Vpz9gPDHalBV7RRZARZEXFdy9JgtKGeQNq8QROY7xno6rbOAtOWJQ1qPWLMjl9c9l9tU6Y90mW6uwwRSz5WCdV_rQ52mSbw4ubTGpiDFLPlsH5WKv0uS4tq2PfsD4jrzpVB_x_dN-Qm4vvq3Pr_LVr8vv58tVrktep7wsmKZMq4YXoAtjALDjgmvODGiKaHjHaVvWFWjNS1SiAiHqthZGdZ1hojghX-bch107oNHoUlC9fAh2UOEgvbLyb8XZrdz4vSyAQUWrMeDzHLD9x3a1XMnpjtIaoKr5Hkb209Ow4B93GJMcbNTY98qh30UpOK3KmtcTeTaTOvgYA3Yv0UDl1JQcm5JTU3JuanR8_PMhL_xzNSPQzACO37m3GGTUFp1GYwPqJI23_w3_DV1Dolw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870546761</pqid></control><display><type>article</type><title>RNA Binding Targets Aminoacyl-tRNA Synthetases to Translating Ribosomes</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>David, Alexandre ; Netzer, Nir ; Strader, Michael Brad ; Das, Suman R. ; Chen, Cai Yun ; Gibbs, James ; Pierre, Philippe ; Bennink, Jack R. ; Yewdell, Jonathan W.</creator><creatorcontrib>David, Alexandre ; Netzer, Nir ; Strader, Michael Brad ; Das, Suman R. ; Chen, Cai Yun ; Gibbs, James ; Pierre, Philippe ; Bennink, Jack R. ; Yewdell, Jonathan W.</creatorcontrib><description>Here, we examine tRNA-aminoacyl synthetase (ARS) localization in protein synthesis. Proteomics reveals that ten of the twenty cytosolic ARSs associate with ribosomes in sucrose gradients: phenylalanyl-RS (FRS), and the 9 ARSs that form the multi-ARS complex (MSC). Using the ribopuromycylation method (RPM) for localizing intracellular translation, we show that FRS and the MSC, and to a lesser extent other ARSs, localize to translating ribosomes, most strikingly when translation is restricted to poxvirus or alphavirus factories in infected cells. Immunoproximity fluorescence indicates close proximity between MSC and the ribosome. Stress induced-translational shutdown recruits the MSC to stress-granules, a depot for mRNA and translation components. MSC binding to mRNA provides a facile explanation for its delivery to translating ribosomes and stress granules. These findings, along with the abundance of the MSC (9 × 106 copies per cell, roughly equimolar with ribosomes), is consistent with the idea that MSC specificity, recently reported to vary with cellular stress (Netzer, N., Goodenbour, J. M., David, A., Dittmar, K. A., Jones, R. B., Schneider, J. R., Boone, D., Eves, E. M., Rosner, M. R., Gibbs, J. S., Embry, A., Dolan, B., Das, S., Hickman, H. D., Berglund, P., Bennink, J. R., Yewdell, J. W., and Pan, T. (2009) Nature 462, 522–526) can be modulated at the level of individual mRNAs to modify decoding of specific gene products.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.209452</identifier><identifier>PMID: 21460219</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alphavirus - metabolism ; Alphavirus Infections - metabolism ; Amino Acyl-tRNA Synthetases - metabolism ; Aminoacyl tRNA Synthetase ; Confocal Microscopy ; HEK293 Cells ; HeLa Cells ; Humans ; Immunology ; Life Sciences ; Molecular Dynamics ; Poxviridae - metabolism ; Poxviridae Infections - metabolism ; Protein Biosynthesis - physiology ; Protein Synthesis and Degradation ; Ribosomes - metabolism ; RNA, Messenger - metabolism ; RNA-binding Protein ; Translation ; Translation Control</subject><ispartof>The Journal of biological chemistry, 2011-06, Vol.286 (23), p.20688-20700</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-432c02ca9731c3dd11ef787c72d1c0eed7f70b4651cc74ea851886b68daffd283</citedby><cites>FETCH-LOGICAL-c476t-432c02ca9731c3dd11ef787c72d1c0eed7f70b4651cc74ea851886b68daffd283</cites><orcidid>0000-0003-0863-8255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121505/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121505/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21460219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00611567$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>David, Alexandre</creatorcontrib><creatorcontrib>Netzer, Nir</creatorcontrib><creatorcontrib>Strader, Michael Brad</creatorcontrib><creatorcontrib>Das, Suman R.</creatorcontrib><creatorcontrib>Chen, Cai Yun</creatorcontrib><creatorcontrib>Gibbs, James</creatorcontrib><creatorcontrib>Pierre, Philippe</creatorcontrib><creatorcontrib>Bennink, Jack R.</creatorcontrib><creatorcontrib>Yewdell, Jonathan W.</creatorcontrib><title>RNA Binding Targets Aminoacyl-tRNA Synthetases to Translating Ribosomes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Here, we examine tRNA-aminoacyl synthetase (ARS) localization in protein synthesis. Proteomics reveals that ten of the twenty cytosolic ARSs associate with ribosomes in sucrose gradients: phenylalanyl-RS (FRS), and the 9 ARSs that form the multi-ARS complex (MSC). Using the ribopuromycylation method (RPM) for localizing intracellular translation, we show that FRS and the MSC, and to a lesser extent other ARSs, localize to translating ribosomes, most strikingly when translation is restricted to poxvirus or alphavirus factories in infected cells. Immunoproximity fluorescence indicates close proximity between MSC and the ribosome. Stress induced-translational shutdown recruits the MSC to stress-granules, a depot for mRNA and translation components. MSC binding to mRNA provides a facile explanation for its delivery to translating ribosomes and stress granules. These findings, along with the abundance of the MSC (9 × 106 copies per cell, roughly equimolar with ribosomes), is consistent with the idea that MSC specificity, recently reported to vary with cellular stress (Netzer, N., Goodenbour, J. M., David, A., Dittmar, K. A., Jones, R. B., Schneider, J. R., Boone, D., Eves, E. M., Rosner, M. R., Gibbs, J. S., Embry, A., Dolan, B., Das, S., Hickman, H. D., Berglund, P., Bennink, J. R., Yewdell, J. W., and Pan, T. (2009) Nature 462, 522–526) can be modulated at the level of individual mRNAs to modify decoding of specific gene products.</description><subject>Alphavirus - metabolism</subject><subject>Alphavirus Infections - metabolism</subject><subject>Amino Acyl-tRNA Synthetases - metabolism</subject><subject>Aminoacyl tRNA Synthetase</subject><subject>Confocal Microscopy</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Molecular Dynamics</subject><subject>Poxviridae - metabolism</subject><subject>Poxviridae Infections - metabolism</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein Synthesis and Degradation</subject><subject>Ribosomes - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-binding Protein</subject><subject>Translation</subject><subject>Translation Control</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9rFDEcxYModls9e5O5iYdp8838SOYirMW2wqrQbqG3kEm-s5syk7RJdmH_e2eYtqhgLiF5n_e-JI-QD0BPgfLy7L7Vpz9gPDHalBV7RRZARZEXFdy9JgtKGeQNq8QROY7xno6rbOAtOWJQ1qPWLMjl9c9l9tU6Y90mW6uwwRSz5WCdV_rQ52mSbw4ubTGpiDFLPlsH5WKv0uS4tq2PfsD4jrzpVB_x_dN-Qm4vvq3Pr_LVr8vv58tVrktep7wsmKZMq4YXoAtjALDjgmvODGiKaHjHaVvWFWjNS1SiAiHqthZGdZ1hojghX-bch107oNHoUlC9fAh2UOEgvbLyb8XZrdz4vSyAQUWrMeDzHLD9x3a1XMnpjtIaoKr5Hkb209Ow4B93GJMcbNTY98qh30UpOK3KmtcTeTaTOvgYA3Yv0UDl1JQcm5JTU3JuanR8_PMhL_xzNSPQzACO37m3GGTUFp1GYwPqJI23_w3_DV1Dolw</recordid><startdate>20110610</startdate><enddate>20110610</enddate><creator>David, Alexandre</creator><creator>Netzer, Nir</creator><creator>Strader, Michael Brad</creator><creator>Das, Suman R.</creator><creator>Chen, Cai Yun</creator><creator>Gibbs, James</creator><creator>Pierre, Philippe</creator><creator>Bennink, Jack R.</creator><creator>Yewdell, Jonathan W.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0863-8255</orcidid></search><sort><creationdate>20110610</creationdate><title>RNA Binding Targets Aminoacyl-tRNA Synthetases to Translating Ribosomes</title><author>David, Alexandre ; Netzer, Nir ; Strader, Michael Brad ; Das, Suman R. ; Chen, Cai Yun ; Gibbs, James ; Pierre, Philippe ; Bennink, Jack R. ; Yewdell, Jonathan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-432c02ca9731c3dd11ef787c72d1c0eed7f70b4651cc74ea851886b68daffd283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alphavirus - metabolism</topic><topic>Alphavirus Infections - metabolism</topic><topic>Amino Acyl-tRNA Synthetases - metabolism</topic><topic>Aminoacyl tRNA Synthetase</topic><topic>Confocal Microscopy</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Molecular Dynamics</topic><topic>Poxviridae - metabolism</topic><topic>Poxviridae Infections - metabolism</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein Synthesis and Degradation</topic><topic>Ribosomes - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-binding Protein</topic><topic>Translation</topic><topic>Translation Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>David, Alexandre</creatorcontrib><creatorcontrib>Netzer, Nir</creatorcontrib><creatorcontrib>Strader, Michael Brad</creatorcontrib><creatorcontrib>Das, Suman R.</creatorcontrib><creatorcontrib>Chen, Cai Yun</creatorcontrib><creatorcontrib>Gibbs, James</creatorcontrib><creatorcontrib>Pierre, Philippe</creatorcontrib><creatorcontrib>Bennink, Jack R.</creatorcontrib><creatorcontrib>Yewdell, Jonathan W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>David, Alexandre</au><au>Netzer, Nir</au><au>Strader, Michael Brad</au><au>Das, Suman R.</au><au>Chen, Cai Yun</au><au>Gibbs, James</au><au>Pierre, Philippe</au><au>Bennink, Jack R.</au><au>Yewdell, Jonathan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA Binding Targets Aminoacyl-tRNA Synthetases to Translating Ribosomes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-06-10</date><risdate>2011</risdate><volume>286</volume><issue>23</issue><spage>20688</spage><epage>20700</epage><pages>20688-20700</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Here, we examine tRNA-aminoacyl synthetase (ARS) localization in protein synthesis. Proteomics reveals that ten of the twenty cytosolic ARSs associate with ribosomes in sucrose gradients: phenylalanyl-RS (FRS), and the 9 ARSs that form the multi-ARS complex (MSC). Using the ribopuromycylation method (RPM) for localizing intracellular translation, we show that FRS and the MSC, and to a lesser extent other ARSs, localize to translating ribosomes, most strikingly when translation is restricted to poxvirus or alphavirus factories in infected cells. Immunoproximity fluorescence indicates close proximity between MSC and the ribosome. Stress induced-translational shutdown recruits the MSC to stress-granules, a depot for mRNA and translation components. MSC binding to mRNA provides a facile explanation for its delivery to translating ribosomes and stress granules. These findings, along with the abundance of the MSC (9 × 106 copies per cell, roughly equimolar with ribosomes), is consistent with the idea that MSC specificity, recently reported to vary with cellular stress (Netzer, N., Goodenbour, J. M., David, A., Dittmar, K. A., Jones, R. B., Schneider, J. R., Boone, D., Eves, E. M., Rosner, M. R., Gibbs, J. S., Embry, A., Dolan, B., Das, S., Hickman, H. D., Berglund, P., Bennink, J. R., Yewdell, J. W., and Pan, T. (2009) Nature 462, 522–526) can be modulated at the level of individual mRNAs to modify decoding of specific gene products.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21460219</pmid><doi>10.1074/jbc.M110.209452</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0863-8255</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2011-06, Vol.286 (23), p.20688-20700 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3121505 |
source | MEDLINE; Free E-Journal (出版社公開部分のみ); PubMed Central; Alma/SFX Local Collection |
subjects | Alphavirus - metabolism Alphavirus Infections - metabolism Amino Acyl-tRNA Synthetases - metabolism Aminoacyl tRNA Synthetase Confocal Microscopy HEK293 Cells HeLa Cells Humans Immunology Life Sciences Molecular Dynamics Poxviridae - metabolism Poxviridae Infections - metabolism Protein Biosynthesis - physiology Protein Synthesis and Degradation Ribosomes - metabolism RNA, Messenger - metabolism RNA-binding Protein Translation Translation Control |
title | RNA Binding Targets Aminoacyl-tRNA Synthetases to Translating Ribosomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20Binding%20Targets%20Aminoacyl-tRNA%20Synthetases%20to%20Translating%20Ribosomes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=David,%20Alexandre&rft.date=2011-06-10&rft.volume=286&rft.issue=23&rft.spage=20688&rft.epage=20700&rft.pages=20688-20700&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.209452&rft_dat=%3Cproquest_pubme%3E870546761%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870546761&rft_id=info:pmid/21460219&rft_els_id=S0021925819491345&rfr_iscdi=true |