Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm

The present article introduces a set of novel methods that facilitate the use of "natural moves" or arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of biological macromolecules. While such "natural moves" may spoil the stereochemistry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2010-08, Vol.17 (8), p.993-1010
Hauptverfasser: Minary, Peter, Levitt, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1010
container_issue 8
container_start_page 993
container_title Journal of computational biology
container_volume 17
creator Minary, Peter
Levitt, Michael
description The present article introduces a set of novel methods that facilitate the use of "natural moves" or arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of biological macromolecules. While such "natural moves" may spoil the stereochemistry and even break the bonded chain at multiple locations, our new method restores the correct chain geometry by adjusting bond and torsion angles in an arbitrary defined molten zone. This is done by successive stages of partial closure that propagate the location of the chain break backwards along the chain. At the end of these stages, the size of the chain break is generally reduced so much that it can be repaired by adjusting the position of a single atom. Our chain closure method is efficient with a computational complexity of O(N(d)), where N(d) is the number of degrees of freedom used to repair the chain break. The new method facilitates the use of arbitrary degrees of freedom including the "natural" degrees of freedom inferred from analyzing experimental (X-ray crystallography and nuclear magnetic resonance [NMR]) structures of nucleic acids and proteins. In terms of its ability to generate large conformational moves and its effectiveness in locating low energy states, the new method is robust and computationally efficient.
doi_str_mv 10.1089/cmb.2010.0016
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3119633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A235630458</galeid><sourcerecordid>A235630458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-a33f1c80d439e75a50b39c7db0376161d313e8f5970bb5802c3c7c5ec52fcda63</originalsourceid><addsrcrecordid>eNqFks9rFTEQxxdRbK0evUrAQ73sM8m8JLseCuXhj0KhFz2HbDbZF9lNnsluxf71zvPVYqFYcpiZzGeGYeZbVa8ZXTHatO_t1K04xYhSJp9Ux0wIVTdSyqfoUylrwZU6ql6U8h0JkFQ9r444VVyqlh9XwyZFn_Jk5pCiGUnazWEKN39C8jPMWxLNvGTM9G7IzhWSPPHo9Gn6QAyJ6dqNpMzJbk2ZgyVoQyR2TGXJjphxSBm7TC-rZ96Mxb26tSfVt08fv26-1JdXny8255e1FaydawPgmW1ov4bWKWEE7aC1qu8oKMkk64GBa7xoFe060VBuwSornBXc295IOKnODn13Sze53ro44_B6l8Nk8i-dTND3MzFs9ZCuNTDWSgBscHrbIKcfiyuznkKxbhxNdGkpWq2bVnHOBZLv_ksyJUBwwUE-jgKHhnE8CqJvD-hgRqcDHgfHtHtcn3MQEuhaNEitHqDw9W4KNkXnA_7fK6gPBTanUrLzdythVO-FpFFIei8kvRcS8m_-3eMd_Vc58BtHsMRa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323812726</pqid></control><display><type>article</type><title>Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Minary, Peter ; Levitt, Michael</creator><creatorcontrib>Minary, Peter ; Levitt, Michael</creatorcontrib><description>The present article introduces a set of novel methods that facilitate the use of "natural moves" or arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of biological macromolecules. While such "natural moves" may spoil the stereochemistry and even break the bonded chain at multiple locations, our new method restores the correct chain geometry by adjusting bond and torsion angles in an arbitrary defined molten zone. This is done by successive stages of partial closure that propagate the location of the chain break backwards along the chain. At the end of these stages, the size of the chain break is generally reduced so much that it can be repaired by adjusting the position of a single atom. Our chain closure method is efficient with a computational complexity of O(N(d)), where N(d) is the number of degrees of freedom used to repair the chain break. The new method facilitates the use of arbitrary degrees of freedom including the "natural" degrees of freedom inferred from analyzing experimental (X-ray crystallography and nuclear magnetic resonance [NMR]) structures of nucleic acids and proteins. In terms of its ability to generate large conformational moves and its effectiveness in locating low energy states, the new method is robust and computationally efficient.</description><identifier>ISSN: 1066-5277</identifier><identifier>EISSN: 1557-8666</identifier><identifier>DOI: 10.1089/cmb.2010.0016</identifier><identifier>PMID: 20726792</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Algorithms ; Analysis ; Breaking ; Chain mobility ; Chains ; Closures ; Computation ; Crystallography, X-Ray ; Degrees of freedom ; Genetic algorithms ; Health aspects ; Magnetic Resonance Spectroscopy ; Markov Chains ; Markov processes ; Mathematical analysis ; Monte Carlo Method ; Nuclear magnetic resonance ; Nucleic Acid Conformation ; Nucleic acids ; Nucleic Acids - chemistry ; Protein Conformation ; Proteins - chemistry ; Stochastic analysis ; Stochastic Processes</subject><ispartof>Journal of computational biology, 2010-08, Vol.17 (8), p.993-1010</ispartof><rights>COPYRIGHT 2010 Mary Ann Liebert, Inc.</rights><rights>Copyright 2010, Mary Ann Liebert, Inc. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-a33f1c80d439e75a50b39c7db0376161d313e8f5970bb5802c3c7c5ec52fcda63</citedby><cites>FETCH-LOGICAL-c519t-a33f1c80d439e75a50b39c7db0376161d313e8f5970bb5802c3c7c5ec52fcda63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3029,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20726792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Minary, Peter</creatorcontrib><creatorcontrib>Levitt, Michael</creatorcontrib><title>Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>The present article introduces a set of novel methods that facilitate the use of "natural moves" or arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of biological macromolecules. While such "natural moves" may spoil the stereochemistry and even break the bonded chain at multiple locations, our new method restores the correct chain geometry by adjusting bond and torsion angles in an arbitrary defined molten zone. This is done by successive stages of partial closure that propagate the location of the chain break backwards along the chain. At the end of these stages, the size of the chain break is generally reduced so much that it can be repaired by adjusting the position of a single atom. Our chain closure method is efficient with a computational complexity of O(N(d)), where N(d) is the number of degrees of freedom used to repair the chain break. The new method facilitates the use of arbitrary degrees of freedom including the "natural" degrees of freedom inferred from analyzing experimental (X-ray crystallography and nuclear magnetic resonance [NMR]) structures of nucleic acids and proteins. In terms of its ability to generate large conformational moves and its effectiveness in locating low energy states, the new method is robust and computationally efficient.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Breaking</subject><subject>Chain mobility</subject><subject>Chains</subject><subject>Closures</subject><subject>Computation</subject><subject>Crystallography, X-Ray</subject><subject>Degrees of freedom</subject><subject>Genetic algorithms</subject><subject>Health aspects</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Monte Carlo Method</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic acids</subject><subject>Nucleic Acids - chemistry</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Stochastic analysis</subject><subject>Stochastic Processes</subject><issn>1066-5277</issn><issn>1557-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9rFTEQxxdRbK0evUrAQ73sM8m8JLseCuXhj0KhFz2HbDbZF9lNnsluxf71zvPVYqFYcpiZzGeGYeZbVa8ZXTHatO_t1K04xYhSJp9Ux0wIVTdSyqfoUylrwZU6ql6U8h0JkFQ9r444VVyqlh9XwyZFn_Jk5pCiGUnazWEKN39C8jPMWxLNvGTM9G7IzhWSPPHo9Gn6QAyJ6dqNpMzJbk2ZgyVoQyR2TGXJjphxSBm7TC-rZ96Mxb26tSfVt08fv26-1JdXny8255e1FaydawPgmW1ov4bWKWEE7aC1qu8oKMkk64GBa7xoFe060VBuwSornBXc295IOKnODn13Sze53ro44_B6l8Nk8i-dTND3MzFs9ZCuNTDWSgBscHrbIKcfiyuznkKxbhxNdGkpWq2bVnHOBZLv_ksyJUBwwUE-jgKHhnE8CqJvD-hgRqcDHgfHtHtcn3MQEuhaNEitHqDw9W4KNkXnA_7fK6gPBTanUrLzdythVO-FpFFIei8kvRcS8m_-3eMd_Vc58BtHsMRa</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Minary, Peter</creator><creator>Levitt, Michael</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201008</creationdate><title>Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm</title><author>Minary, Peter ; Levitt, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-a33f1c80d439e75a50b39c7db0376161d313e8f5970bb5802c3c7c5ec52fcda63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Breaking</topic><topic>Chain mobility</topic><topic>Chains</topic><topic>Closures</topic><topic>Computation</topic><topic>Crystallography, X-Ray</topic><topic>Degrees of freedom</topic><topic>Genetic algorithms</topic><topic>Health aspects</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Monte Carlo Method</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic acids</topic><topic>Nucleic Acids - chemistry</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Stochastic analysis</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minary, Peter</creatorcontrib><creatorcontrib>Levitt, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minary, Peter</au><au>Levitt, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2010-08</date><risdate>2010</risdate><volume>17</volume><issue>8</issue><spage>993</spage><epage>1010</epage><pages>993-1010</pages><issn>1066-5277</issn><eissn>1557-8666</eissn><abstract>The present article introduces a set of novel methods that facilitate the use of "natural moves" or arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of biological macromolecules. While such "natural moves" may spoil the stereochemistry and even break the bonded chain at multiple locations, our new method restores the correct chain geometry by adjusting bond and torsion angles in an arbitrary defined molten zone. This is done by successive stages of partial closure that propagate the location of the chain break backwards along the chain. At the end of these stages, the size of the chain break is generally reduced so much that it can be repaired by adjusting the position of a single atom. Our chain closure method is efficient with a computational complexity of O(N(d)), where N(d) is the number of degrees of freedom used to repair the chain break. The new method facilitates the use of arbitrary degrees of freedom including the "natural" degrees of freedom inferred from analyzing experimental (X-ray crystallography and nuclear magnetic resonance [NMR]) structures of nucleic acids and proteins. In terms of its ability to generate large conformational moves and its effectiveness in locating low energy states, the new method is robust and computationally efficient.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>20726792</pmid><doi>10.1089/cmb.2010.0016</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1066-5277
ispartof Journal of computational biology, 2010-08, Vol.17 (8), p.993-1010
issn 1066-5277
1557-8666
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3119633
source Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection
subjects Algorithms
Analysis
Breaking
Chain mobility
Chains
Closures
Computation
Crystallography, X-Ray
Degrees of freedom
Genetic algorithms
Health aspects
Magnetic Resonance Spectroscopy
Markov Chains
Markov processes
Mathematical analysis
Monte Carlo Method
Nuclear magnetic resonance
Nucleic Acid Conformation
Nucleic acids
Nucleic Acids - chemistry
Protein Conformation
Proteins - chemistry
Stochastic analysis
Stochastic Processes
title Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20optimization%20with%20natural%20degrees%20of%20freedom:%20a%20novel%20stochastic%20chain%20closure%20algorithm&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Minary,%20Peter&rft.date=2010-08&rft.volume=17&rft.issue=8&rft.spage=993&rft.epage=1010&rft.pages=993-1010&rft.issn=1066-5277&rft.eissn=1557-8666&rft_id=info:doi/10.1089/cmb.2010.0016&rft_dat=%3Cgale_pubme%3EA235630458%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323812726&rft_id=info:pmid/20726792&rft_galeid=A235630458&rfr_iscdi=true