Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm
The present article introduces a set of novel methods that facilitate the use of "natural moves" or arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of biological macromolecules. While such "natural moves" may spoil the stereochemistry...
Gespeichert in:
Veröffentlicht in: | Journal of computational biology 2010-08, Vol.17 (8), p.993-1010 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1010 |
---|---|
container_issue | 8 |
container_start_page | 993 |
container_title | Journal of computational biology |
container_volume | 17 |
creator | Minary, Peter Levitt, Michael |
description | The present article introduces a set of novel methods that facilitate the use of "natural moves" or arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of biological macromolecules. While such "natural moves" may spoil the stereochemistry and even break the bonded chain at multiple locations, our new method restores the correct chain geometry by adjusting bond and torsion angles in an arbitrary defined molten zone. This is done by successive stages of partial closure that propagate the location of the chain break backwards along the chain. At the end of these stages, the size of the chain break is generally reduced so much that it can be repaired by adjusting the position of a single atom. Our chain closure method is efficient with a computational complexity of O(N(d)), where N(d) is the number of degrees of freedom used to repair the chain break. The new method facilitates the use of arbitrary degrees of freedom including the "natural" degrees of freedom inferred from analyzing experimental (X-ray crystallography and nuclear magnetic resonance [NMR]) structures of nucleic acids and proteins. In terms of its ability to generate large conformational moves and its effectiveness in locating low energy states, the new method is robust and computationally efficient. |
doi_str_mv | 10.1089/cmb.2010.0016 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3119633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A235630458</galeid><sourcerecordid>A235630458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-a33f1c80d439e75a50b39c7db0376161d313e8f5970bb5802c3c7c5ec52fcda63</originalsourceid><addsrcrecordid>eNqFks9rFTEQxxdRbK0evUrAQ73sM8m8JLseCuXhj0KhFz2HbDbZF9lNnsluxf71zvPVYqFYcpiZzGeGYeZbVa8ZXTHatO_t1K04xYhSJp9Ux0wIVTdSyqfoUylrwZU6ql6U8h0JkFQ9r444VVyqlh9XwyZFn_Jk5pCiGUnazWEKN39C8jPMWxLNvGTM9G7IzhWSPPHo9Gn6QAyJ6dqNpMzJbk2ZgyVoQyR2TGXJjphxSBm7TC-rZ96Mxb26tSfVt08fv26-1JdXny8255e1FaydawPgmW1ov4bWKWEE7aC1qu8oKMkk64GBa7xoFe060VBuwSornBXc295IOKnODn13Sze53ro44_B6l8Nk8i-dTND3MzFs9ZCuNTDWSgBscHrbIKcfiyuznkKxbhxNdGkpWq2bVnHOBZLv_ksyJUBwwUE-jgKHhnE8CqJvD-hgRqcDHgfHtHtcn3MQEuhaNEitHqDw9W4KNkXnA_7fK6gPBTanUrLzdythVO-FpFFIei8kvRcS8m_-3eMd_Vc58BtHsMRa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323812726</pqid></control><display><type>article</type><title>Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Minary, Peter ; Levitt, Michael</creator><creatorcontrib>Minary, Peter ; Levitt, Michael</creatorcontrib><description>The present article introduces a set of novel methods that facilitate the use of "natural moves" or arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of biological macromolecules. While such "natural moves" may spoil the stereochemistry and even break the bonded chain at multiple locations, our new method restores the correct chain geometry by adjusting bond and torsion angles in an arbitrary defined molten zone. This is done by successive stages of partial closure that propagate the location of the chain break backwards along the chain. At the end of these stages, the size of the chain break is generally reduced so much that it can be repaired by adjusting the position of a single atom. Our chain closure method is efficient with a computational complexity of O(N(d)), where N(d) is the number of degrees of freedom used to repair the chain break. The new method facilitates the use of arbitrary degrees of freedom including the "natural" degrees of freedom inferred from analyzing experimental (X-ray crystallography and nuclear magnetic resonance [NMR]) structures of nucleic acids and proteins. In terms of its ability to generate large conformational moves and its effectiveness in locating low energy states, the new method is robust and computationally efficient.</description><identifier>ISSN: 1066-5277</identifier><identifier>EISSN: 1557-8666</identifier><identifier>DOI: 10.1089/cmb.2010.0016</identifier><identifier>PMID: 20726792</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Algorithms ; Analysis ; Breaking ; Chain mobility ; Chains ; Closures ; Computation ; Crystallography, X-Ray ; Degrees of freedom ; Genetic algorithms ; Health aspects ; Magnetic Resonance Spectroscopy ; Markov Chains ; Markov processes ; Mathematical analysis ; Monte Carlo Method ; Nuclear magnetic resonance ; Nucleic Acid Conformation ; Nucleic acids ; Nucleic Acids - chemistry ; Protein Conformation ; Proteins - chemistry ; Stochastic analysis ; Stochastic Processes</subject><ispartof>Journal of computational biology, 2010-08, Vol.17 (8), p.993-1010</ispartof><rights>COPYRIGHT 2010 Mary Ann Liebert, Inc.</rights><rights>Copyright 2010, Mary Ann Liebert, Inc. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-a33f1c80d439e75a50b39c7db0376161d313e8f5970bb5802c3c7c5ec52fcda63</citedby><cites>FETCH-LOGICAL-c519t-a33f1c80d439e75a50b39c7db0376161d313e8f5970bb5802c3c7c5ec52fcda63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3029,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20726792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Minary, Peter</creatorcontrib><creatorcontrib>Levitt, Michael</creatorcontrib><title>Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>The present article introduces a set of novel methods that facilitate the use of "natural moves" or arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of biological macromolecules. While such "natural moves" may spoil the stereochemistry and even break the bonded chain at multiple locations, our new method restores the correct chain geometry by adjusting bond and torsion angles in an arbitrary defined molten zone. This is done by successive stages of partial closure that propagate the location of the chain break backwards along the chain. At the end of these stages, the size of the chain break is generally reduced so much that it can be repaired by adjusting the position of a single atom. Our chain closure method is efficient with a computational complexity of O(N(d)), where N(d) is the number of degrees of freedom used to repair the chain break. The new method facilitates the use of arbitrary degrees of freedom including the "natural" degrees of freedom inferred from analyzing experimental (X-ray crystallography and nuclear magnetic resonance [NMR]) structures of nucleic acids and proteins. In terms of its ability to generate large conformational moves and its effectiveness in locating low energy states, the new method is robust and computationally efficient.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Breaking</subject><subject>Chain mobility</subject><subject>Chains</subject><subject>Closures</subject><subject>Computation</subject><subject>Crystallography, X-Ray</subject><subject>Degrees of freedom</subject><subject>Genetic algorithms</subject><subject>Health aspects</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Monte Carlo Method</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic acids</subject><subject>Nucleic Acids - chemistry</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Stochastic analysis</subject><subject>Stochastic Processes</subject><issn>1066-5277</issn><issn>1557-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9rFTEQxxdRbK0evUrAQ73sM8m8JLseCuXhj0KhFz2HbDbZF9lNnsluxf71zvPVYqFYcpiZzGeGYeZbVa8ZXTHatO_t1K04xYhSJp9Ux0wIVTdSyqfoUylrwZU6ql6U8h0JkFQ9r444VVyqlh9XwyZFn_Jk5pCiGUnazWEKN39C8jPMWxLNvGTM9G7IzhWSPPHo9Gn6QAyJ6dqNpMzJbk2ZgyVoQyR2TGXJjphxSBm7TC-rZ96Mxb26tSfVt08fv26-1JdXny8255e1FaydawPgmW1ov4bWKWEE7aC1qu8oKMkk64GBa7xoFe060VBuwSornBXc295IOKnODn13Sze53ro44_B6l8Nk8i-dTND3MzFs9ZCuNTDWSgBscHrbIKcfiyuznkKxbhxNdGkpWq2bVnHOBZLv_ksyJUBwwUE-jgKHhnE8CqJvD-hgRqcDHgfHtHtcn3MQEuhaNEitHqDw9W4KNkXnA_7fK6gPBTanUrLzdythVO-FpFFIei8kvRcS8m_-3eMd_Vc58BtHsMRa</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Minary, Peter</creator><creator>Levitt, Michael</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201008</creationdate><title>Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm</title><author>Minary, Peter ; Levitt, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-a33f1c80d439e75a50b39c7db0376161d313e8f5970bb5802c3c7c5ec52fcda63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Breaking</topic><topic>Chain mobility</topic><topic>Chains</topic><topic>Closures</topic><topic>Computation</topic><topic>Crystallography, X-Ray</topic><topic>Degrees of freedom</topic><topic>Genetic algorithms</topic><topic>Health aspects</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Monte Carlo Method</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic acids</topic><topic>Nucleic Acids - chemistry</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Stochastic analysis</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minary, Peter</creatorcontrib><creatorcontrib>Levitt, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minary, Peter</au><au>Levitt, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2010-08</date><risdate>2010</risdate><volume>17</volume><issue>8</issue><spage>993</spage><epage>1010</epage><pages>993-1010</pages><issn>1066-5277</issn><eissn>1557-8666</eissn><abstract>The present article introduces a set of novel methods that facilitate the use of "natural moves" or arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of biological macromolecules. While such "natural moves" may spoil the stereochemistry and even break the bonded chain at multiple locations, our new method restores the correct chain geometry by adjusting bond and torsion angles in an arbitrary defined molten zone. This is done by successive stages of partial closure that propagate the location of the chain break backwards along the chain. At the end of these stages, the size of the chain break is generally reduced so much that it can be repaired by adjusting the position of a single atom. Our chain closure method is efficient with a computational complexity of O(N(d)), where N(d) is the number of degrees of freedom used to repair the chain break. The new method facilitates the use of arbitrary degrees of freedom including the "natural" degrees of freedom inferred from analyzing experimental (X-ray crystallography and nuclear magnetic resonance [NMR]) structures of nucleic acids and proteins. In terms of its ability to generate large conformational moves and its effectiveness in locating low energy states, the new method is robust and computationally efficient.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>20726792</pmid><doi>10.1089/cmb.2010.0016</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-5277 |
ispartof | Journal of computational biology, 2010-08, Vol.17 (8), p.993-1010 |
issn | 1066-5277 1557-8666 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3119633 |
source | Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection |
subjects | Algorithms Analysis Breaking Chain mobility Chains Closures Computation Crystallography, X-Ray Degrees of freedom Genetic algorithms Health aspects Magnetic Resonance Spectroscopy Markov Chains Markov processes Mathematical analysis Monte Carlo Method Nuclear magnetic resonance Nucleic Acid Conformation Nucleic acids Nucleic Acids - chemistry Protein Conformation Proteins - chemistry Stochastic analysis Stochastic Processes |
title | Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20optimization%20with%20natural%20degrees%20of%20freedom:%20a%20novel%20stochastic%20chain%20closure%20algorithm&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Minary,%20Peter&rft.date=2010-08&rft.volume=17&rft.issue=8&rft.spage=993&rft.epage=1010&rft.pages=993-1010&rft.issn=1066-5277&rft.eissn=1557-8666&rft_id=info:doi/10.1089/cmb.2010.0016&rft_dat=%3Cgale_pubme%3EA235630458%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323812726&rft_id=info:pmid/20726792&rft_galeid=A235630458&rfr_iscdi=true |