Strength of default mode resting-state connectivity relates to white matter integrity in children

A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9–13‐year‐old children with diffusion tensor imaging and res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental science 2011-07, Vol.14 (4), p.738-751
Hauptverfasser: Gordon, Evan M., Lee, Philip S., Maisog, Jose M., Foss-Feig, Jennifer, Billington, Michael E., VanMeter, John, Vaidya, Chandan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 751
container_issue 4
container_start_page 738
container_title Developmental science
container_volume 14
creator Gordon, Evan M.
Lee, Philip S.
Maisog, Jose M.
Foss-Feig, Jennifer
Billington, Michael E.
VanMeter, John
Vaidya, Chandan J.
description A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9–13‐year‐old children with diffusion tensor imaging and resting‐state functional magnetic resonance imaging. We identified resting‐state networks using Independent Component Analysis and tested whether the functional connectivity between the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) depends upon the maturation of the underlying cingulum white matter tract. To determine the generalizability of this relationship, we also tested whether functional connectivity depends on white matter maturity between bilateral lateral prefrontal cortex (lateral PFC) within the executive control network. We found a positive relationship between mPFC‐PCC connectivity and fractional anisotropy of the cingulum bundle; this positive relationship was moderated by the age of the subjects such that it was stronger in older children. By contrast, no such structure–function relationship emerged between right and left lateral PFC. However, functional and structural connectivity of this tract related positively with cognitive speed, fluency, and set‐switching neuropsychological measures.
doi_str_mv 10.1111/j.1467-7687.2010.01020.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3117440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ929749</ericid><sourcerecordid>2376146281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5930-7b45d1cd9bf3b9cbd871983f321423dde802925202ae7abe202ac6e8ce507b023</originalsourceid><addsrcrecordid>eNqNUU1v1DAQjRCIlsI_QCjiApcs_nZyQULLtlBVcOgiKi6W40x2vSROsb3t7r_HYUv4OCAsWR7Ne_M8My_LcoxmOJ1XmxlmQhZSlHJGUMqmS9Bsdy87noD7KaaCFpLzq6PsUQgbhBCjCD_MjggWUqCKHWf6Mnpwq7jOhzZvoNXbLub90EDuIUTrVkWIOkJuBufARHtj4z5BXcqFPA757domtNcxgs-ti7DyI8O63Kxt1yTtx9mDVncBnty9J9mn08Vy_q64-Hj2fv7mojC8oqiQNeMNNk1Vt7SuTN2UElclbSnBjNCmgRKRinCCiAapaxgDI6A0wJGsEaEn2euD7vW27qEx4KLXnbr2ttd-rwZt1Z-Is2u1Gm4UxVgyhpLAizsBP3zbpulVb4OBrtMOhm1QpSSMciZYYr78JzOZQbhgTNBEff4XdTNsvUuLGPUQTkaMrZcHkvFDCB7aqWuM1Gi42qjRVzX6qkbD1Q_D1S6VPvt96qnwp8OJ8PRAAG_NBC_OK1JJVv3a2q3tYP_f_6q3i8v5GCaB4iBgQ4TdJKD9VyUklVx9_nCmrpZ8fiqW5-oL_Q7a7NPm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872011672</pqid></control><display><type>article</type><title>Strength of default mode resting-state connectivity relates to white matter integrity in children</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Gordon, Evan M. ; Lee, Philip S. ; Maisog, Jose M. ; Foss-Feig, Jennifer ; Billington, Michael E. ; VanMeter, John ; Vaidya, Chandan J.</creator><creatorcontrib>Gordon, Evan M. ; Lee, Philip S. ; Maisog, Jose M. ; Foss-Feig, Jennifer ; Billington, Michael E. ; VanMeter, John ; Vaidya, Chandan J.</creatorcontrib><description>A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9–13‐year‐old children with diffusion tensor imaging and resting‐state functional magnetic resonance imaging. We identified resting‐state networks using Independent Component Analysis and tested whether the functional connectivity between the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) depends upon the maturation of the underlying cingulum white matter tract. To determine the generalizability of this relationship, we also tested whether functional connectivity depends on white matter maturity between bilateral lateral prefrontal cortex (lateral PFC) within the executive control network. We found a positive relationship between mPFC‐PCC connectivity and fractional anisotropy of the cingulum bundle; this positive relationship was moderated by the age of the subjects such that it was stronger in older children. By contrast, no such structure–function relationship emerged between right and left lateral PFC. However, functional and structural connectivity of this tract related positively with cognitive speed, fluency, and set‐switching neuropsychological measures.</description><identifier>ISSN: 1363-755X</identifier><identifier>EISSN: 1467-7687</identifier><identifier>DOI: 10.1111/j.1467-7687.2010.01020.x</identifier><identifier>PMID: 21676094</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adolescent ; Adolescents ; Age ; Age Differences ; Age Factors ; Anisotropy ; Brain ; Brain - physiology ; Brain Hemisphere Functions ; Brain mapping ; Brain Mapping - methods ; Child ; Child Development ; Child psychology ; Children ; Cingulum ; Cognition ; Cognitive ability ; Cognitive Processes ; Cortex (cingulate) ; Cortex (prefrontal) ; Development ; Diffusion Tensor Imaging - methods ; Evaluation Methods ; Executive Function ; Functional Laterality ; Functional magnetic resonance imaging ; Humans ; Integrity ; Investigations ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Maturity ; Measures (Individuals) ; Nerve Net - physiology ; Neural networks ; Neural Pathways - physiology ; Neuropsychology ; Science Education ; Structure-function relationships ; Substantia alba</subject><ispartof>Developmental science, 2011-07, Vol.14 (4), p.738-751</ispartof><rights>2010 Blackwell Publishing Ltd</rights><rights>2010 Blackwell Publishing Ltd.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5930-7b45d1cd9bf3b9cbd871983f321423dde802925202ae7abe202ac6e8ce507b023</citedby><cites>FETCH-LOGICAL-c5930-7b45d1cd9bf3b9cbd871983f321423dde802925202ae7abe202ac6e8ce507b023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-7687.2010.01020.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-7687.2010.01020.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ929749$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21676094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gordon, Evan M.</creatorcontrib><creatorcontrib>Lee, Philip S.</creatorcontrib><creatorcontrib>Maisog, Jose M.</creatorcontrib><creatorcontrib>Foss-Feig, Jennifer</creatorcontrib><creatorcontrib>Billington, Michael E.</creatorcontrib><creatorcontrib>VanMeter, John</creatorcontrib><creatorcontrib>Vaidya, Chandan J.</creatorcontrib><title>Strength of default mode resting-state connectivity relates to white matter integrity in children</title><title>Developmental science</title><addtitle>Dev Sci</addtitle><description>A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9–13‐year‐old children with diffusion tensor imaging and resting‐state functional magnetic resonance imaging. We identified resting‐state networks using Independent Component Analysis and tested whether the functional connectivity between the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) depends upon the maturation of the underlying cingulum white matter tract. To determine the generalizability of this relationship, we also tested whether functional connectivity depends on white matter maturity between bilateral lateral prefrontal cortex (lateral PFC) within the executive control network. We found a positive relationship between mPFC‐PCC connectivity and fractional anisotropy of the cingulum bundle; this positive relationship was moderated by the age of the subjects such that it was stronger in older children. By contrast, no such structure–function relationship emerged between right and left lateral PFC. However, functional and structural connectivity of this tract related positively with cognitive speed, fluency, and set‐switching neuropsychological measures.</description><subject>Adolescent</subject><subject>Adolescents</subject><subject>Age</subject><subject>Age Differences</subject><subject>Age Factors</subject><subject>Anisotropy</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain Hemisphere Functions</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Child</subject><subject>Child Development</subject><subject>Child psychology</subject><subject>Children</subject><subject>Cingulum</subject><subject>Cognition</subject><subject>Cognitive ability</subject><subject>Cognitive Processes</subject><subject>Cortex (cingulate)</subject><subject>Cortex (prefrontal)</subject><subject>Development</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Evaluation Methods</subject><subject>Executive Function</subject><subject>Functional Laterality</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Integrity</subject><subject>Investigations</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Maturity</subject><subject>Measures (Individuals)</subject><subject>Nerve Net - physiology</subject><subject>Neural networks</subject><subject>Neural Pathways - physiology</subject><subject>Neuropsychology</subject><subject>Science Education</subject><subject>Structure-function relationships</subject><subject>Substantia alba</subject><issn>1363-755X</issn><issn>1467-7687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU1v1DAQjRCIlsI_QCjiApcs_nZyQULLtlBVcOgiKi6W40x2vSROsb3t7r_HYUv4OCAsWR7Ne_M8My_LcoxmOJ1XmxlmQhZSlHJGUMqmS9Bsdy87noD7KaaCFpLzq6PsUQgbhBCjCD_MjggWUqCKHWf6Mnpwq7jOhzZvoNXbLub90EDuIUTrVkWIOkJuBufARHtj4z5BXcqFPA757domtNcxgs-ti7DyI8O63Kxt1yTtx9mDVncBnty9J9mn08Vy_q64-Hj2fv7mojC8oqiQNeMNNk1Vt7SuTN2UElclbSnBjNCmgRKRinCCiAapaxgDI6A0wJGsEaEn2euD7vW27qEx4KLXnbr2ttd-rwZt1Z-Is2u1Gm4UxVgyhpLAizsBP3zbpulVb4OBrtMOhm1QpSSMciZYYr78JzOZQbhgTNBEff4XdTNsvUuLGPUQTkaMrZcHkvFDCB7aqWuM1Gi42qjRVzX6qkbD1Q_D1S6VPvt96qnwp8OJ8PRAAG_NBC_OK1JJVv3a2q3tYP_f_6q3i8v5GCaB4iBgQ4TdJKD9VyUklVx9_nCmrpZ8fiqW5-oL_Q7a7NPm</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Gordon, Evan M.</creator><creator>Lee, Philip S.</creator><creator>Maisog, Jose M.</creator><creator>Foss-Feig, Jennifer</creator><creator>Billington, Michael E.</creator><creator>VanMeter, John</creator><creator>Vaidya, Chandan J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201107</creationdate><title>Strength of default mode resting-state connectivity relates to white matter integrity in children</title><author>Gordon, Evan M. ; Lee, Philip S. ; Maisog, Jose M. ; Foss-Feig, Jennifer ; Billington, Michael E. ; VanMeter, John ; Vaidya, Chandan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5930-7b45d1cd9bf3b9cbd871983f321423dde802925202ae7abe202ac6e8ce507b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adolescent</topic><topic>Adolescents</topic><topic>Age</topic><topic>Age Differences</topic><topic>Age Factors</topic><topic>Anisotropy</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain Hemisphere Functions</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Child</topic><topic>Child Development</topic><topic>Child psychology</topic><topic>Children</topic><topic>Cingulum</topic><topic>Cognition</topic><topic>Cognitive ability</topic><topic>Cognitive Processes</topic><topic>Cortex (cingulate)</topic><topic>Cortex (prefrontal)</topic><topic>Development</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Evaluation Methods</topic><topic>Executive Function</topic><topic>Functional Laterality</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Integrity</topic><topic>Investigations</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Maturity</topic><topic>Measures (Individuals)</topic><topic>Nerve Net - physiology</topic><topic>Neural networks</topic><topic>Neural Pathways - physiology</topic><topic>Neuropsychology</topic><topic>Science Education</topic><topic>Structure-function relationships</topic><topic>Substantia alba</topic><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Evan M.</creatorcontrib><creatorcontrib>Lee, Philip S.</creatorcontrib><creatorcontrib>Maisog, Jose M.</creatorcontrib><creatorcontrib>Foss-Feig, Jennifer</creatorcontrib><creatorcontrib>Billington, Michael E.</creatorcontrib><creatorcontrib>VanMeter, John</creatorcontrib><creatorcontrib>Vaidya, Chandan J.</creatorcontrib><collection>Istex</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, Evan M.</au><au>Lee, Philip S.</au><au>Maisog, Jose M.</au><au>Foss-Feig, Jennifer</au><au>Billington, Michael E.</au><au>VanMeter, John</au><au>Vaidya, Chandan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ929749</ericid><atitle>Strength of default mode resting-state connectivity relates to white matter integrity in children</atitle><jtitle>Developmental science</jtitle><addtitle>Dev Sci</addtitle><date>2011-07</date><risdate>2011</risdate><volume>14</volume><issue>4</issue><spage>738</spage><epage>751</epage><pages>738-751</pages><issn>1363-755X</issn><eissn>1467-7687</eissn><abstract>A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9–13‐year‐old children with diffusion tensor imaging and resting‐state functional magnetic resonance imaging. We identified resting‐state networks using Independent Component Analysis and tested whether the functional connectivity between the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) depends upon the maturation of the underlying cingulum white matter tract. To determine the generalizability of this relationship, we also tested whether functional connectivity depends on white matter maturity between bilateral lateral prefrontal cortex (lateral PFC) within the executive control network. We found a positive relationship between mPFC‐PCC connectivity and fractional anisotropy of the cingulum bundle; this positive relationship was moderated by the age of the subjects such that it was stronger in older children. By contrast, no such structure–function relationship emerged between right and left lateral PFC. However, functional and structural connectivity of this tract related positively with cognitive speed, fluency, and set‐switching neuropsychological measures.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21676094</pmid><doi>10.1111/j.1467-7687.2010.01020.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1363-755X
ispartof Developmental science, 2011-07, Vol.14 (4), p.738-751
issn 1363-755X
1467-7687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3117440
source MEDLINE; Access via Wiley Online Library
subjects Adolescent
Adolescents
Age
Age Differences
Age Factors
Anisotropy
Brain
Brain - physiology
Brain Hemisphere Functions
Brain mapping
Brain Mapping - methods
Child
Child Development
Child psychology
Children
Cingulum
Cognition
Cognitive ability
Cognitive Processes
Cortex (cingulate)
Cortex (prefrontal)
Development
Diffusion Tensor Imaging - methods
Evaluation Methods
Executive Function
Functional Laterality
Functional magnetic resonance imaging
Humans
Integrity
Investigations
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Maturity
Measures (Individuals)
Nerve Net - physiology
Neural networks
Neural Pathways - physiology
Neuropsychology
Science Education
Structure-function relationships
Substantia alba
title Strength of default mode resting-state connectivity relates to white matter integrity in children
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength%20of%20default%20mode%20resting-state%20connectivity%20relates%20to%20white%20matter%20integrity%20in%20children&rft.jtitle=Developmental%20science&rft.au=Gordon,%20Evan%20M.&rft.date=2011-07&rft.volume=14&rft.issue=4&rft.spage=738&rft.epage=751&rft.pages=738-751&rft.issn=1363-755X&rft.eissn=1467-7687&rft_id=info:doi/10.1111/j.1467-7687.2010.01020.x&rft_dat=%3Cproquest_pubme%3E2376146281%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872011672&rft_id=info:pmid/21676094&rft_ericid=EJ929749&rfr_iscdi=true