Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling
Motivation: Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large-scale RNA-Seq datasets with te...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2011-07, Vol.27 (13), p.i383-i391 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | i391 |
---|---|
container_issue | 13 |
container_start_page | i383 |
container_title | Bioinformatics |
container_volume | 27 |
creator | abaj, Pawe P. Leparc, Germán G. Linggi, Bryan E. Markillie, Lye Meng Wiley, H. Steven Kreil, David P. |
description | Motivation: Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large-scale RNA-Seq datasets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means.
Results: We report on a comprehensive study of target identification and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive recall of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, |
doi_str_mv | 10.1093/bioinformatics/btr247 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3117338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btr247</oup_id><sourcerecordid>873120325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-c8783a192db4a0dd8d413bae5aeac638e8f208d043af987f44e2a77e49965eed3</originalsourceid><addsrcrecordid>eNqNkc1u1DAURq2qiJbCIxRF3bAK9V8SZ1OpGpWCVIFEy9q6cW46RomdsZ1R4elxmaGiu65syecef1cfIaeMfmS0Feed9dYNPkyQrInnXQpcNgfkmMmalpxW7WG-i7oppaLiiLyJ8SelFZNSviZHnNWqom19THC1hgAmYbC_s8m7Alxf2GkOfosTulT4ofj-9bK8xU0xBzQ2PkLWFZsFXLIpD22xSAFcNMHOqcCHjMW_VJYMdrTu_i15NcAY8d3-PCE_Pl3drT6XN9-uv6wub0pTSZlKoxolgLW87yTQvle9ZKIDrADB1EKhGjhVPZUChlY1g5TIoWlQtm1dIfbihFzsvPPSTdibnD_AqOdgJwi_tAern784u9b3fqsFY40QKgvOdgIfk9XR2IRmbbxzaJJmlAumWIY-7H8JfrNgTHqy0eA4gkO_RK0awTgVvMpktSNN8DEGHJ6iMKofa9TPa9S7GvPc-__3eJr611sG6D7nMr_Q-Qfe-7QG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873120325</pqid></control><display><type>article</type><title>Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>abaj, Pawe P. ; Leparc, Germán G. ; Linggi, Bryan E. ; Markillie, Lye Meng ; Wiley, H. Steven ; Kreil, David P.</creator><creatorcontrib>abaj, Pawe P. ; Leparc, Germán G. ; Linggi, Bryan E. ; Markillie, Lye Meng ; Wiley, H. Steven ; Kreil, David P. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Motivation: Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large-scale RNA-Seq datasets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means.
Results: We report on a comprehensive study of target identification and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive recall of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, <30% of all transcripts could be quantified reliably with a relative error <20%. Based on established tools, we then introduce a new approach for mapping and analysing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision.
Contact:
rnaseq10@boku.ac.at
Supplementary information:
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btr247</identifier><identifier>PMID: 21685096</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>ACCURACY ; BASIC BIOLOGICAL SCIENCES ; Bioinformatics ; Cell Line ; DESIGN ; DNA SEQUENCERS ; Gene Expression Profiling - methods ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; GENES ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Microarray Analysis ; MICROARRAY TECHNOLOGY ; microarrays ; Original Papers ; PARALLEL PROCESSING ; RNA ; RNA - analysis ; RNA-Seq ; SCREENS ; Sequence Analysis, RNA - methods ; Software ; statistics ; TARGETS</subject><ispartof>Bioinformatics, 2011-07, Vol.27 (13), p.i383-i391</ispartof><rights>The Author(s) 2011. Published by Oxford University Press. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-c8783a192db4a0dd8d413bae5aeac638e8f208d043af987f44e2a77e49965eed3</citedby><cites>FETCH-LOGICAL-c544t-c8783a192db4a0dd8d413bae5aeac638e8f208d043af987f44e2a77e49965eed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117338/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117338/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21685096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1023181$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>abaj, Pawe P.</creatorcontrib><creatorcontrib>Leparc, Germán G.</creatorcontrib><creatorcontrib>Linggi, Bryan E.</creatorcontrib><creatorcontrib>Markillie, Lye Meng</creatorcontrib><creatorcontrib>Wiley, H. Steven</creatorcontrib><creatorcontrib>Kreil, David P.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large-scale RNA-Seq datasets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means.
Results: We report on a comprehensive study of target identification and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive recall of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, <30% of all transcripts could be quantified reliably with a relative error <20%. Based on established tools, we then introduce a new approach for mapping and analysing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision.
Contact:
rnaseq10@boku.ac.at
Supplementary information:
Supplementary data are available at Bioinformatics online.</description><subject>ACCURACY</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Bioinformatics</subject><subject>Cell Line</subject><subject>DESIGN</subject><subject>DNA SEQUENCERS</subject><subject>Gene Expression Profiling - methods</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>GENES</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Microarray Analysis</subject><subject>MICROARRAY TECHNOLOGY</subject><subject>microarrays</subject><subject>Original Papers</subject><subject>PARALLEL PROCESSING</subject><subject>RNA</subject><subject>RNA - analysis</subject><subject>RNA-Seq</subject><subject>SCREENS</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Software</subject><subject>statistics</subject><subject>TARGETS</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAURq2qiJbCIxRF3bAK9V8SZ1OpGpWCVIFEy9q6cW46RomdsZ1R4elxmaGiu65syecef1cfIaeMfmS0Feed9dYNPkyQrInnXQpcNgfkmMmalpxW7WG-i7oppaLiiLyJ8SelFZNSviZHnNWqom19THC1hgAmYbC_s8m7Alxf2GkOfosTulT4ofj-9bK8xU0xBzQ2PkLWFZsFXLIpD22xSAFcNMHOqcCHjMW_VJYMdrTu_i15NcAY8d3-PCE_Pl3drT6XN9-uv6wub0pTSZlKoxolgLW87yTQvle9ZKIDrADB1EKhGjhVPZUChlY1g5TIoWlQtm1dIfbihFzsvPPSTdibnD_AqOdgJwi_tAern784u9b3fqsFY40QKgvOdgIfk9XR2IRmbbxzaJJmlAumWIY-7H8JfrNgTHqy0eA4gkO_RK0awTgVvMpktSNN8DEGHJ6iMKofa9TPa9S7GvPc-__3eJr611sG6D7nMr_Q-Qfe-7QG</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>abaj, Pawe P.</creator><creator>Leparc, Germán G.</creator><creator>Linggi, Bryan E.</creator><creator>Markillie, Lye Meng</creator><creator>Wiley, H. Steven</creator><creator>Kreil, David P.</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20110701</creationdate><title>Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling</title><author>abaj, Pawe P. ; Leparc, Germán G. ; Linggi, Bryan E. ; Markillie, Lye Meng ; Wiley, H. Steven ; Kreil, David P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-c8783a192db4a0dd8d413bae5aeac638e8f208d043af987f44e2a77e49965eed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ACCURACY</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Bioinformatics</topic><topic>Cell Line</topic><topic>DESIGN</topic><topic>DNA SEQUENCERS</topic><topic>Gene Expression Profiling - methods</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>GENES</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Microarray Analysis</topic><topic>MICROARRAY TECHNOLOGY</topic><topic>microarrays</topic><topic>Original Papers</topic><topic>PARALLEL PROCESSING</topic><topic>RNA</topic><topic>RNA - analysis</topic><topic>RNA-Seq</topic><topic>SCREENS</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Software</topic><topic>statistics</topic><topic>TARGETS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>abaj, Pawe P.</creatorcontrib><creatorcontrib>Leparc, Germán G.</creatorcontrib><creatorcontrib>Linggi, Bryan E.</creatorcontrib><creatorcontrib>Markillie, Lye Meng</creatorcontrib><creatorcontrib>Wiley, H. Steven</creatorcontrib><creatorcontrib>Kreil, David P.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>abaj, Pawe P.</au><au>Leparc, Germán G.</au><au>Linggi, Bryan E.</au><au>Markillie, Lye Meng</au><au>Wiley, H. Steven</au><au>Kreil, David P.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>27</volume><issue>13</issue><spage>i383</spage><epage>i391</epage><pages>i383-i391</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Motivation: Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large-scale RNA-Seq datasets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means.
Results: We report on a comprehensive study of target identification and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive recall of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, <30% of all transcripts could be quantified reliably with a relative error <20%. Based on established tools, we then introduce a new approach for mapping and analysing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision.
Contact:
rnaseq10@boku.ac.at
Supplementary information:
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>21685096</pmid><doi>10.1093/bioinformatics/btr247</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2011-07, Vol.27 (13), p.i383-i391 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3117338 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection |
subjects | ACCURACY BASIC BIOLOGICAL SCIENCES Bioinformatics Cell Line DESIGN DNA SEQUENCERS Gene Expression Profiling - methods GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE GENES High-Throughput Nucleotide Sequencing - methods Humans Microarray Analysis MICROARRAY TECHNOLOGY microarrays Original Papers PARALLEL PROCESSING RNA RNA - analysis RNA-Seq SCREENS Sequence Analysis, RNA - methods Software statistics TARGETS |
title | Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20improvement%20of%20RNA-Seq%20precision%20in%20quantitative%20transcript%20expression%20profiling&rft.jtitle=Bioinformatics&rft.au=abaj,%20Pawe%20P.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2011-07-01&rft.volume=27&rft.issue=13&rft.spage=i383&rft.epage=i391&rft.pages=i383-i391&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btr247&rft_dat=%3Cproquest_pubme%3E873120325%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873120325&rft_id=info:pmid/21685096&rft_oup_id=10.1093/bioinformatics/btr247&rfr_iscdi=true |