Empirical constrained Bayes predictors accounting for non-detects among repeated measures

When the prediction of subject‐specific random effects is of interest, constrained Bayes predictors (CB) have been shown to reduce the shrinkage of the widely accepted Bayes predictor while still maintaining desirable properties, such as optimizing mean‐square error subsequent to matching the first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2010-11, Vol.29 (25), p.2656-2668
Hauptverfasser: Moore, Reneé H., Lyles, Robert H., Manatunga, Amita K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2668
container_issue 25
container_start_page 2656
container_title Statistics in medicine
container_volume 29
creator Moore, Reneé H.
Lyles, Robert H.
Manatunga, Amita K.
description When the prediction of subject‐specific random effects is of interest, constrained Bayes predictors (CB) have been shown to reduce the shrinkage of the widely accepted Bayes predictor while still maintaining desirable properties, such as optimizing mean‐square error subsequent to matching the first two moments of the random effects of interest. However, occupational exposure and other epidemiologic (e.g. HIV) studies often present a further challenge because data may fall below the measuring instrument's limit of detection. Although methodology exists in the literature to compute Bayes estimates in the presence of non‐detects (BayesND), CB methodology has not been proposed in this setting. By combining methodologies for computing CBs and BayesND, we introduce two novel CBs that accommodate an arbitrary number of observable and non‐detectable measurements per subject. Based on application to real data sets (e.g. occupational exposure, HIV RNA) and simulation studies, these CB predictors are markedly superior to the Bayes predictor and to alternative predictors computed using ad hoc methods in terms of meeting the goal of matching the first two moments of the true random effects distribution. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.4043
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3108454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174481411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5063-ba543b3162b5b4939c4174a839b9184a072c78e5e060f9b773f9bdc82a8a6c6d3</originalsourceid><addsrcrecordid>eNp1kd9rFDEQx4Mo9jwF_wJZfNGXrZNNNj9eBFvbWqgK_qDoS8hm52rqbnImu-r996bceajgywzMfOY7M3wJeUjhkAI0z7IfDzlwdossKGhZQ9Oq22QBjZS1kLQ9IPdyvgagtG3kXXLQgALNlViQTyfj2ifv7FC5GPKUrA_YV0d2g7laJ-y9m2LKlXUuzmHy4apaxVSFGOoeJ3RTaY2xVBOu0U5ldESb54T5PrmzskPGB7u8JB9PTz4cv6ov3p6dH7-4qF0LgtWdbTnrGBVN13ZcM-04ldwqpjtNFbcgGycVtggCVrqTkpXYO9VYZYUTPVuS51vd9dyN2DsM5YnBrJMfbdqYaL35uxP8F3MVvxtGQfGyfEme7ARS_DZjnszos8NhsAHjnI3SmjKuFRTy8T_kdZxTKN8ZKUApzoQq0NMt5FLMOeFqfwoFc-OWKW6ZG7cK-ujP0_fgb3sKUG-BH37AzX-FzPvz1zvBHe_zhD_3vE1fjZBMtubyzZmRp0fvXn6-FEaxX55prro</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760884368</pqid></control><display><type>article</type><title>Empirical constrained Bayes predictors accounting for non-detects among repeated measures</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moore, Reneé H. ; Lyles, Robert H. ; Manatunga, Amita K.</creator><creatorcontrib>Moore, Reneé H. ; Lyles, Robert H. ; Manatunga, Amita K.</creatorcontrib><description>When the prediction of subject‐specific random effects is of interest, constrained Bayes predictors (CB) have been shown to reduce the shrinkage of the widely accepted Bayes predictor while still maintaining desirable properties, such as optimizing mean‐square error subsequent to matching the first two moments of the random effects of interest. However, occupational exposure and other epidemiologic (e.g. HIV) studies often present a further challenge because data may fall below the measuring instrument's limit of detection. Although methodology exists in the literature to compute Bayes estimates in the presence of non‐detects (BayesND), CB methodology has not been proposed in this setting. By combining methodologies for computing CBs and BayesND, we introduce two novel CBs that accommodate an arbitrary number of observable and non‐detectable measurements per subject. Based on application to real data sets (e.g. occupational exposure, HIV RNA) and simulation studies, these CB predictors are markedly superior to the Bayes predictor and to alternative predictors computed using ad hoc methods in terms of meeting the goal of matching the first two moments of the true random effects distribution. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.4043</identifier><identifier>PMID: 20809486</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Bayes Theorem ; Bayesian analysis ; Computer Simulation ; constrained Bayes ; Data Interpretation, Statistical ; detection limits ; Disease Progression ; Dust ; Epidemiologic Research Design ; Epidemiology ; Female ; HIV ; HIV Infections - epidemiology ; Human immunodeficiency virus ; Humans ; left-censoring ; Linear Models ; Lung Diseases - epidemiology ; Lung Diseases - etiology ; Medical statistics ; mixed linear model ; Occupational Exposure - adverse effects ; Occupational Exposure - statistics &amp; numerical data ; Prognosis ; random effects ; Respiratory Tract Diseases - epidemiology ; Respiratory Tract Diseases - etiology ; shrinkage ; Simulation ; Studies</subject><ispartof>Statistics in medicine, 2010-11, Vol.29 (25), p.2656-2668</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Nov 10, 2010</rights><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5063-ba543b3162b5b4939c4174a839b9184a072c78e5e060f9b773f9bdc82a8a6c6d3</citedby><cites>FETCH-LOGICAL-c5063-ba543b3162b5b4939c4174a839b9184a072c78e5e060f9b773f9bdc82a8a6c6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.4043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.4043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20809486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, Reneé H.</creatorcontrib><creatorcontrib>Lyles, Robert H.</creatorcontrib><creatorcontrib>Manatunga, Amita K.</creatorcontrib><title>Empirical constrained Bayes predictors accounting for non-detects among repeated measures</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>When the prediction of subject‐specific random effects is of interest, constrained Bayes predictors (CB) have been shown to reduce the shrinkage of the widely accepted Bayes predictor while still maintaining desirable properties, such as optimizing mean‐square error subsequent to matching the first two moments of the random effects of interest. However, occupational exposure and other epidemiologic (e.g. HIV) studies often present a further challenge because data may fall below the measuring instrument's limit of detection. Although methodology exists in the literature to compute Bayes estimates in the presence of non‐detects (BayesND), CB methodology has not been proposed in this setting. By combining methodologies for computing CBs and BayesND, we introduce two novel CBs that accommodate an arbitrary number of observable and non‐detectable measurements per subject. Based on application to real data sets (e.g. occupational exposure, HIV RNA) and simulation studies, these CB predictors are markedly superior to the Bayes predictor and to alternative predictors computed using ad hoc methods in terms of meeting the goal of matching the first two moments of the true random effects distribution. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Computer Simulation</subject><subject>constrained Bayes</subject><subject>Data Interpretation, Statistical</subject><subject>detection limits</subject><subject>Disease Progression</subject><subject>Dust</subject><subject>Epidemiologic Research Design</subject><subject>Epidemiology</subject><subject>Female</subject><subject>HIV</subject><subject>HIV Infections - epidemiology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>left-censoring</subject><subject>Linear Models</subject><subject>Lung Diseases - epidemiology</subject><subject>Lung Diseases - etiology</subject><subject>Medical statistics</subject><subject>mixed linear model</subject><subject>Occupational Exposure - adverse effects</subject><subject>Occupational Exposure - statistics &amp; numerical data</subject><subject>Prognosis</subject><subject>random effects</subject><subject>Respiratory Tract Diseases - epidemiology</subject><subject>Respiratory Tract Diseases - etiology</subject><subject>shrinkage</subject><subject>Simulation</subject><subject>Studies</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd9rFDEQx4Mo9jwF_wJZfNGXrZNNNj9eBFvbWqgK_qDoS8hm52rqbnImu-r996bceajgywzMfOY7M3wJeUjhkAI0z7IfDzlwdossKGhZQ9Oq22QBjZS1kLQ9IPdyvgagtG3kXXLQgALNlViQTyfj2ifv7FC5GPKUrA_YV0d2g7laJ-y9m2LKlXUuzmHy4apaxVSFGOoeJ3RTaY2xVBOu0U5ldESb54T5PrmzskPGB7u8JB9PTz4cv6ov3p6dH7-4qF0LgtWdbTnrGBVN13ZcM-04ldwqpjtNFbcgGycVtggCVrqTkpXYO9VYZYUTPVuS51vd9dyN2DsM5YnBrJMfbdqYaL35uxP8F3MVvxtGQfGyfEme7ARS_DZjnszos8NhsAHjnI3SmjKuFRTy8T_kdZxTKN8ZKUApzoQq0NMt5FLMOeFqfwoFc-OWKW6ZG7cK-ujP0_fgb3sKUG-BH37AzX-FzPvz1zvBHe_zhD_3vE1fjZBMtubyzZmRp0fvXn6-FEaxX55prro</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Moore, Reneé H.</creator><creator>Lyles, Robert H.</creator><creator>Manatunga, Amita K.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20101110</creationdate><title>Empirical constrained Bayes predictors accounting for non-detects among repeated measures</title><author>Moore, Reneé H. ; Lyles, Robert H. ; Manatunga, Amita K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5063-ba543b3162b5b4939c4174a839b9184a072c78e5e060f9b773f9bdc82a8a6c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Computer Simulation</topic><topic>constrained Bayes</topic><topic>Data Interpretation, Statistical</topic><topic>detection limits</topic><topic>Disease Progression</topic><topic>Dust</topic><topic>Epidemiologic Research Design</topic><topic>Epidemiology</topic><topic>Female</topic><topic>HIV</topic><topic>HIV Infections - epidemiology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>left-censoring</topic><topic>Linear Models</topic><topic>Lung Diseases - epidemiology</topic><topic>Lung Diseases - etiology</topic><topic>Medical statistics</topic><topic>mixed linear model</topic><topic>Occupational Exposure - adverse effects</topic><topic>Occupational Exposure - statistics &amp; numerical data</topic><topic>Prognosis</topic><topic>random effects</topic><topic>Respiratory Tract Diseases - epidemiology</topic><topic>Respiratory Tract Diseases - etiology</topic><topic>shrinkage</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Reneé H.</creatorcontrib><creatorcontrib>Lyles, Robert H.</creatorcontrib><creatorcontrib>Manatunga, Amita K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Reneé H.</au><au>Lyles, Robert H.</au><au>Manatunga, Amita K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical constrained Bayes predictors accounting for non-detects among repeated measures</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2010-11-10</date><risdate>2010</risdate><volume>29</volume><issue>25</issue><spage>2656</spage><epage>2668</epage><pages>2656-2668</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>When the prediction of subject‐specific random effects is of interest, constrained Bayes predictors (CB) have been shown to reduce the shrinkage of the widely accepted Bayes predictor while still maintaining desirable properties, such as optimizing mean‐square error subsequent to matching the first two moments of the random effects of interest. However, occupational exposure and other epidemiologic (e.g. HIV) studies often present a further challenge because data may fall below the measuring instrument's limit of detection. Although methodology exists in the literature to compute Bayes estimates in the presence of non‐detects (BayesND), CB methodology has not been proposed in this setting. By combining methodologies for computing CBs and BayesND, we introduce two novel CBs that accommodate an arbitrary number of observable and non‐detectable measurements per subject. Based on application to real data sets (e.g. occupational exposure, HIV RNA) and simulation studies, these CB predictors are markedly superior to the Bayes predictor and to alternative predictors computed using ad hoc methods in terms of meeting the goal of matching the first two moments of the true random effects distribution. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>20809486</pmid><doi>10.1002/sim.4043</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2010-11, Vol.29 (25), p.2656-2668
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3108454
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bayes Theorem
Bayesian analysis
Computer Simulation
constrained Bayes
Data Interpretation, Statistical
detection limits
Disease Progression
Dust
Epidemiologic Research Design
Epidemiology
Female
HIV
HIV Infections - epidemiology
Human immunodeficiency virus
Humans
left-censoring
Linear Models
Lung Diseases - epidemiology
Lung Diseases - etiology
Medical statistics
mixed linear model
Occupational Exposure - adverse effects
Occupational Exposure - statistics & numerical data
Prognosis
random effects
Respiratory Tract Diseases - epidemiology
Respiratory Tract Diseases - etiology
shrinkage
Simulation
Studies
title Empirical constrained Bayes predictors accounting for non-detects among repeated measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20constrained%20Bayes%20predictors%20accounting%20for%20non-detects%20among%20repeated%20measures&rft.jtitle=Statistics%20in%20medicine&rft.au=Moore,%20Rene%C3%A9%20H.&rft.date=2010-11-10&rft.volume=29&rft.issue=25&rft.spage=2656&rft.epage=2668&rft.pages=2656-2668&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.4043&rft_dat=%3Cproquest_pubme%3E2174481411%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760884368&rft_id=info:pmid/20809486&rfr_iscdi=true