Empirical constrained Bayes predictors accounting for non-detects among repeated measures
When the prediction of subject‐specific random effects is of interest, constrained Bayes predictors (CB) have been shown to reduce the shrinkage of the widely accepted Bayes predictor while still maintaining desirable properties, such as optimizing mean‐square error subsequent to matching the first...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2010-11, Vol.29 (25), p.2656-2668 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2668 |
---|---|
container_issue | 25 |
container_start_page | 2656 |
container_title | Statistics in medicine |
container_volume | 29 |
creator | Moore, Reneé H. Lyles, Robert H. Manatunga, Amita K. |
description | When the prediction of subject‐specific random effects is of interest, constrained Bayes predictors (CB) have been shown to reduce the shrinkage of the widely accepted Bayes predictor while still maintaining desirable properties, such as optimizing mean‐square error subsequent to matching the first two moments of the random effects of interest. However, occupational exposure and other epidemiologic (e.g. HIV) studies often present a further challenge because data may fall below the measuring instrument's limit of detection. Although methodology exists in the literature to compute Bayes estimates in the presence of non‐detects (BayesND), CB methodology has not been proposed in this setting. By combining methodologies for computing CBs and BayesND, we introduce two novel CBs that accommodate an arbitrary number of observable and non‐detectable measurements per subject. Based on application to real data sets (e.g. occupational exposure, HIV RNA) and simulation studies, these CB predictors are markedly superior to the Bayes predictor and to alternative predictors computed using ad hoc methods in terms of meeting the goal of matching the first two moments of the true random effects distribution. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.4043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3108454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174481411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5063-ba543b3162b5b4939c4174a839b9184a072c78e5e060f9b773f9bdc82a8a6c6d3</originalsourceid><addsrcrecordid>eNp1kd9rFDEQx4Mo9jwF_wJZfNGXrZNNNj9eBFvbWqgK_qDoS8hm52rqbnImu-r996bceajgywzMfOY7M3wJeUjhkAI0z7IfDzlwdossKGhZQ9Oq22QBjZS1kLQ9IPdyvgagtG3kXXLQgALNlViQTyfj2ifv7FC5GPKUrA_YV0d2g7laJ-y9m2LKlXUuzmHy4apaxVSFGOoeJ3RTaY2xVBOu0U5ldESb54T5PrmzskPGB7u8JB9PTz4cv6ov3p6dH7-4qF0LgtWdbTnrGBVN13ZcM-04ldwqpjtNFbcgGycVtggCVrqTkpXYO9VYZYUTPVuS51vd9dyN2DsM5YnBrJMfbdqYaL35uxP8F3MVvxtGQfGyfEme7ARS_DZjnszos8NhsAHjnI3SmjKuFRTy8T_kdZxTKN8ZKUApzoQq0NMt5FLMOeFqfwoFc-OWKW6ZG7cK-ujP0_fgb3sKUG-BH37AzX-FzPvz1zvBHe_zhD_3vE1fjZBMtubyzZmRp0fvXn6-FEaxX55prro</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760884368</pqid></control><display><type>article</type><title>Empirical constrained Bayes predictors accounting for non-detects among repeated measures</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moore, Reneé H. ; Lyles, Robert H. ; Manatunga, Amita K.</creator><creatorcontrib>Moore, Reneé H. ; Lyles, Robert H. ; Manatunga, Amita K.</creatorcontrib><description>When the prediction of subject‐specific random effects is of interest, constrained Bayes predictors (CB) have been shown to reduce the shrinkage of the widely accepted Bayes predictor while still maintaining desirable properties, such as optimizing mean‐square error subsequent to matching the first two moments of the random effects of interest. However, occupational exposure and other epidemiologic (e.g. HIV) studies often present a further challenge because data may fall below the measuring instrument's limit of detection. Although methodology exists in the literature to compute Bayes estimates in the presence of non‐detects (BayesND), CB methodology has not been proposed in this setting. By combining methodologies for computing CBs and BayesND, we introduce two novel CBs that accommodate an arbitrary number of observable and non‐detectable measurements per subject. Based on application to real data sets (e.g. occupational exposure, HIV RNA) and simulation studies, these CB predictors are markedly superior to the Bayes predictor and to alternative predictors computed using ad hoc methods in terms of meeting the goal of matching the first two moments of the true random effects distribution. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.4043</identifier><identifier>PMID: 20809486</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Bayes Theorem ; Bayesian analysis ; Computer Simulation ; constrained Bayes ; Data Interpretation, Statistical ; detection limits ; Disease Progression ; Dust ; Epidemiologic Research Design ; Epidemiology ; Female ; HIV ; HIV Infections - epidemiology ; Human immunodeficiency virus ; Humans ; left-censoring ; Linear Models ; Lung Diseases - epidemiology ; Lung Diseases - etiology ; Medical statistics ; mixed linear model ; Occupational Exposure - adverse effects ; Occupational Exposure - statistics & numerical data ; Prognosis ; random effects ; Respiratory Tract Diseases - epidemiology ; Respiratory Tract Diseases - etiology ; shrinkage ; Simulation ; Studies</subject><ispartof>Statistics in medicine, 2010-11, Vol.29 (25), p.2656-2668</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Nov 10, 2010</rights><rights>Copyright © 2010 John Wiley & Sons, Ltd. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5063-ba543b3162b5b4939c4174a839b9184a072c78e5e060f9b773f9bdc82a8a6c6d3</citedby><cites>FETCH-LOGICAL-c5063-ba543b3162b5b4939c4174a839b9184a072c78e5e060f9b773f9bdc82a8a6c6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.4043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.4043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20809486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, Reneé H.</creatorcontrib><creatorcontrib>Lyles, Robert H.</creatorcontrib><creatorcontrib>Manatunga, Amita K.</creatorcontrib><title>Empirical constrained Bayes predictors accounting for non-detects among repeated measures</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>When the prediction of subject‐specific random effects is of interest, constrained Bayes predictors (CB) have been shown to reduce the shrinkage of the widely accepted Bayes predictor while still maintaining desirable properties, such as optimizing mean‐square error subsequent to matching the first two moments of the random effects of interest. However, occupational exposure and other epidemiologic (e.g. HIV) studies often present a further challenge because data may fall below the measuring instrument's limit of detection. Although methodology exists in the literature to compute Bayes estimates in the presence of non‐detects (BayesND), CB methodology has not been proposed in this setting. By combining methodologies for computing CBs and BayesND, we introduce two novel CBs that accommodate an arbitrary number of observable and non‐detectable measurements per subject. Based on application to real data sets (e.g. occupational exposure, HIV RNA) and simulation studies, these CB predictors are markedly superior to the Bayes predictor and to alternative predictors computed using ad hoc methods in terms of meeting the goal of matching the first two moments of the true random effects distribution. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Computer Simulation</subject><subject>constrained Bayes</subject><subject>Data Interpretation, Statistical</subject><subject>detection limits</subject><subject>Disease Progression</subject><subject>Dust</subject><subject>Epidemiologic Research Design</subject><subject>Epidemiology</subject><subject>Female</subject><subject>HIV</subject><subject>HIV Infections - epidemiology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>left-censoring</subject><subject>Linear Models</subject><subject>Lung Diseases - epidemiology</subject><subject>Lung Diseases - etiology</subject><subject>Medical statistics</subject><subject>mixed linear model</subject><subject>Occupational Exposure - adverse effects</subject><subject>Occupational Exposure - statistics & numerical data</subject><subject>Prognosis</subject><subject>random effects</subject><subject>Respiratory Tract Diseases - epidemiology</subject><subject>Respiratory Tract Diseases - etiology</subject><subject>shrinkage</subject><subject>Simulation</subject><subject>Studies</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd9rFDEQx4Mo9jwF_wJZfNGXrZNNNj9eBFvbWqgK_qDoS8hm52rqbnImu-r996bceajgywzMfOY7M3wJeUjhkAI0z7IfDzlwdossKGhZQ9Oq22QBjZS1kLQ9IPdyvgagtG3kXXLQgALNlViQTyfj2ifv7FC5GPKUrA_YV0d2g7laJ-y9m2LKlXUuzmHy4apaxVSFGOoeJ3RTaY2xVBOu0U5ldESb54T5PrmzskPGB7u8JB9PTz4cv6ov3p6dH7-4qF0LgtWdbTnrGBVN13ZcM-04ldwqpjtNFbcgGycVtggCVrqTkpXYO9VYZYUTPVuS51vd9dyN2DsM5YnBrJMfbdqYaL35uxP8F3MVvxtGQfGyfEme7ARS_DZjnszos8NhsAHjnI3SmjKuFRTy8T_kdZxTKN8ZKUApzoQq0NMt5FLMOeFqfwoFc-OWKW6ZG7cK-ujP0_fgb3sKUG-BH37AzX-FzPvz1zvBHe_zhD_3vE1fjZBMtubyzZmRp0fvXn6-FEaxX55prro</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Moore, Reneé H.</creator><creator>Lyles, Robert H.</creator><creator>Manatunga, Amita K.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20101110</creationdate><title>Empirical constrained Bayes predictors accounting for non-detects among repeated measures</title><author>Moore, Reneé H. ; Lyles, Robert H. ; Manatunga, Amita K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5063-ba543b3162b5b4939c4174a839b9184a072c78e5e060f9b773f9bdc82a8a6c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Computer Simulation</topic><topic>constrained Bayes</topic><topic>Data Interpretation, Statistical</topic><topic>detection limits</topic><topic>Disease Progression</topic><topic>Dust</topic><topic>Epidemiologic Research Design</topic><topic>Epidemiology</topic><topic>Female</topic><topic>HIV</topic><topic>HIV Infections - epidemiology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>left-censoring</topic><topic>Linear Models</topic><topic>Lung Diseases - epidemiology</topic><topic>Lung Diseases - etiology</topic><topic>Medical statistics</topic><topic>mixed linear model</topic><topic>Occupational Exposure - adverse effects</topic><topic>Occupational Exposure - statistics & numerical data</topic><topic>Prognosis</topic><topic>random effects</topic><topic>Respiratory Tract Diseases - epidemiology</topic><topic>Respiratory Tract Diseases - etiology</topic><topic>shrinkage</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Reneé H.</creatorcontrib><creatorcontrib>Lyles, Robert H.</creatorcontrib><creatorcontrib>Manatunga, Amita K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Reneé H.</au><au>Lyles, Robert H.</au><au>Manatunga, Amita K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical constrained Bayes predictors accounting for non-detects among repeated measures</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2010-11-10</date><risdate>2010</risdate><volume>29</volume><issue>25</issue><spage>2656</spage><epage>2668</epage><pages>2656-2668</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>When the prediction of subject‐specific random effects is of interest, constrained Bayes predictors (CB) have been shown to reduce the shrinkage of the widely accepted Bayes predictor while still maintaining desirable properties, such as optimizing mean‐square error subsequent to matching the first two moments of the random effects of interest. However, occupational exposure and other epidemiologic (e.g. HIV) studies often present a further challenge because data may fall below the measuring instrument's limit of detection. Although methodology exists in the literature to compute Bayes estimates in the presence of non‐detects (BayesND), CB methodology has not been proposed in this setting. By combining methodologies for computing CBs and BayesND, we introduce two novel CBs that accommodate an arbitrary number of observable and non‐detectable measurements per subject. Based on application to real data sets (e.g. occupational exposure, HIV RNA) and simulation studies, these CB predictors are markedly superior to the Bayes predictor and to alternative predictors computed using ad hoc methods in terms of meeting the goal of matching the first two moments of the true random effects distribution. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>20809486</pmid><doi>10.1002/sim.4043</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2010-11, Vol.29 (25), p.2656-2668 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3108454 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bayes Theorem Bayesian analysis Computer Simulation constrained Bayes Data Interpretation, Statistical detection limits Disease Progression Dust Epidemiologic Research Design Epidemiology Female HIV HIV Infections - epidemiology Human immunodeficiency virus Humans left-censoring Linear Models Lung Diseases - epidemiology Lung Diseases - etiology Medical statistics mixed linear model Occupational Exposure - adverse effects Occupational Exposure - statistics & numerical data Prognosis random effects Respiratory Tract Diseases - epidemiology Respiratory Tract Diseases - etiology shrinkage Simulation Studies |
title | Empirical constrained Bayes predictors accounting for non-detects among repeated measures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20constrained%20Bayes%20predictors%20accounting%20for%20non-detects%20among%20repeated%20measures&rft.jtitle=Statistics%20in%20medicine&rft.au=Moore,%20Rene%C3%A9%20H.&rft.date=2010-11-10&rft.volume=29&rft.issue=25&rft.spage=2656&rft.epage=2668&rft.pages=2656-2668&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.4043&rft_dat=%3Cproquest_pubme%3E2174481411%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760884368&rft_id=info:pmid/20809486&rfr_iscdi=true |