Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation

Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans . Similar filaments preserved in silica are often identified as FeOB fossils in rocks....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISME Journal 2011-04, Vol.5 (4), p.717-727
Hauptverfasser: Chan, Clara S, Fakra, Sirine C, Emerson, David, Fleming, Emily J, Edwards, Katrina J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 727
container_issue 4
container_start_page 717
container_title ISME Journal
container_volume 5
creator Chan, Clara S
Fakra, Sirine C
Emerson, David
Fleming, Emily J
Edwards, Katrina J
description Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans . Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 μm h −1 ). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger (∼100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.
doi_str_mv 10.1038/ismej.2010.173
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3105749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721518861</sourcerecordid><originalsourceid>FETCH-LOGICAL-a606t-45fb23917e8292ffb89f2fc65ea5110ab71e3a1bd4d44304a8fe9ec67bd70d03</originalsourceid><addsrcrecordid>eNp9kruP1DAQxiME4o6DlhJZUECTPT-SOKFAQide0ko011uOM0lmSezFdngV_O04u8fqQIjKj_n5m_nGk2WPGd0wKupLDDPsNpyuZynuZOdMliyXQtK7p33Fz7IHIewoLWVVyfvZGWeMyqIQ59nPLcbRRe_2IxqC3tncfcMOf6AdSKtNBI-a7L3rFgPE-UHbxIWop0-BREeMs-nxRGa04PVEBu--xvElwXk_odERnQ2kd5606AIOVsfFw3oxH2IPs3u9ngI8ulkvsuu3b66v3ufbj-8-XL3e5rqiVcyLsm-5aJiEmje879u66XlvqhJ0mazoVjIQmrVd0SVXtNB1Dw2YSradpB0VF9mro-x-aWfoDKSi9aT2HmftvyunUf0ZsTiqwX1RgqWeFU0SeHoUcCGiCgYjmDF5t2CiYrSoeS0S9Pwmi3efFwhRzRgMTJO24Jag6nLFGlEk8sV_yfVrK1ZxuZb-7C905xZvU7MSxZs6cVImanOkjHcheOhP3hg9qKnDoKh1UFQalPTgye2OnPDfk5GAyyMQUsgO4G_n_afkL-SRzX8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1029886177</pqid></control><display><type>article</type><title>Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Chan, Clara S ; Fakra, Sirine C ; Emerson, David ; Fleming, Emily J ; Edwards, Katrina J</creator><creatorcontrib>Chan, Clara S ; Fakra, Sirine C ; Emerson, David ; Fleming, Emily J ; Edwards, Katrina J ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans . Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 μm h −1 ). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger (∼100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2010.173</identifier><identifier>PMID: 21107443</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/41/1969 ; 631/326/41/2528 ; ABSORPTION ; BACTERIA ; Biomedical and Life Sciences ; Crystals ; Ecology ; ELECTRON MICROSCOPY ; encrustation ; ENVIRONMENTAL SCIENCES ; Evolutionary Biology ; Ferric Compounds - analysis ; Fibrils ; Filaments ; FINE STRUCTURE ; FLUORESCENCE ; Fossils ; Gallionella ferruginea ; Ionizing radiation ; IRON ; Iron - metabolism ; Iron-oxidizing bacteria ; Leukocytes (neutrophilic) ; Life Sciences ; Light microscopy ; METABOLISM ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; MICROSCOPY ; Minerals ; Minerals - chemistry ; ORGANIC POLYMERS ; Original ; original-article ; OXIDATION ; Oxidation-Reduction ; Physiology ; Polymers ; POLYSACCHARIDES ; Proteobacteria - cytology ; Proteobacteria - growth &amp; development ; Proteobacteria - metabolism ; Rocks ; Saccharides ; Scanning ; SILICA ; SPECTROSCOPY ; TRANSMISSION ELECTRON MICROSCOPY ; Ultrastructure</subject><ispartof>ISME Journal, 2011-04, Vol.5 (4), p.717-727</ispartof><rights>International Society for Microbial Ecology 2011</rights><rights>Copyright Nature Publishing Group Apr 2011</rights><rights>Copyright © 2011 International Society for Microbial Ecology 2011 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a606t-45fb23917e8292ffb89f2fc65ea5110ab71e3a1bd4d44304a8fe9ec67bd70d03</citedby><cites>FETCH-LOGICAL-a606t-45fb23917e8292ffb89f2fc65ea5110ab71e3a1bd4d44304a8fe9ec67bd70d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105749/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105749/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21107443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1048283$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Clara S</creatorcontrib><creatorcontrib>Fakra, Sirine C</creatorcontrib><creatorcontrib>Emerson, David</creatorcontrib><creatorcontrib>Fleming, Emily J</creatorcontrib><creatorcontrib>Edwards, Katrina J</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation</title><title>ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans . Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 μm h −1 ). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger (∼100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.</description><subject>631/326/41/1969</subject><subject>631/326/41/2528</subject><subject>ABSORPTION</subject><subject>BACTERIA</subject><subject>Biomedical and Life Sciences</subject><subject>Crystals</subject><subject>Ecology</subject><subject>ELECTRON MICROSCOPY</subject><subject>encrustation</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Evolutionary Biology</subject><subject>Ferric Compounds - analysis</subject><subject>Fibrils</subject><subject>Filaments</subject><subject>FINE STRUCTURE</subject><subject>FLUORESCENCE</subject><subject>Fossils</subject><subject>Gallionella ferruginea</subject><subject>Ionizing radiation</subject><subject>IRON</subject><subject>Iron - metabolism</subject><subject>Iron-oxidizing bacteria</subject><subject>Leukocytes (neutrophilic)</subject><subject>Life Sciences</subject><subject>Light microscopy</subject><subject>METABOLISM</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>MICROSCOPY</subject><subject>Minerals</subject><subject>Minerals - chemistry</subject><subject>ORGANIC POLYMERS</subject><subject>Original</subject><subject>original-article</subject><subject>OXIDATION</subject><subject>Oxidation-Reduction</subject><subject>Physiology</subject><subject>Polymers</subject><subject>POLYSACCHARIDES</subject><subject>Proteobacteria - cytology</subject><subject>Proteobacteria - growth &amp; development</subject><subject>Proteobacteria - metabolism</subject><subject>Rocks</subject><subject>Saccharides</subject><subject>Scanning</subject><subject>SILICA</subject><subject>SPECTROSCOPY</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>Ultrastructure</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kruP1DAQxiME4o6DlhJZUECTPT-SOKFAQide0ko011uOM0lmSezFdngV_O04u8fqQIjKj_n5m_nGk2WPGd0wKupLDDPsNpyuZynuZOdMliyXQtK7p33Fz7IHIewoLWVVyfvZGWeMyqIQ59nPLcbRRe_2IxqC3tncfcMOf6AdSKtNBI-a7L3rFgPE-UHbxIWop0-BREeMs-nxRGa04PVEBu--xvElwXk_odERnQ2kd5606AIOVsfFw3oxH2IPs3u9ngI8ulkvsuu3b66v3ufbj-8-XL3e5rqiVcyLsm-5aJiEmje879u66XlvqhJ0mazoVjIQmrVd0SVXtNB1Dw2YSradpB0VF9mro-x-aWfoDKSi9aT2HmftvyunUf0ZsTiqwX1RgqWeFU0SeHoUcCGiCgYjmDF5t2CiYrSoeS0S9Pwmi3efFwhRzRgMTJO24Jag6nLFGlEk8sV_yfVrK1ZxuZb-7C905xZvU7MSxZs6cVImanOkjHcheOhP3hg9qKnDoKh1UFQalPTgye2OnPDfk5GAyyMQUsgO4G_n_afkL-SRzX8</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Chan, Clara S</creator><creator>Fakra, Sirine C</creator><creator>Emerson, David</creator><creator>Fleming, Emily J</creator><creator>Edwards, Katrina J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20110401</creationdate><title>Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation</title><author>Chan, Clara S ; Fakra, Sirine C ; Emerson, David ; Fleming, Emily J ; Edwards, Katrina J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a606t-45fb23917e8292ffb89f2fc65ea5110ab71e3a1bd4d44304a8fe9ec67bd70d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/326/41/1969</topic><topic>631/326/41/2528</topic><topic>ABSORPTION</topic><topic>BACTERIA</topic><topic>Biomedical and Life Sciences</topic><topic>Crystals</topic><topic>Ecology</topic><topic>ELECTRON MICROSCOPY</topic><topic>encrustation</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Evolutionary Biology</topic><topic>Ferric Compounds - analysis</topic><topic>Fibrils</topic><topic>Filaments</topic><topic>FINE STRUCTURE</topic><topic>FLUORESCENCE</topic><topic>Fossils</topic><topic>Gallionella ferruginea</topic><topic>Ionizing radiation</topic><topic>IRON</topic><topic>Iron - metabolism</topic><topic>Iron-oxidizing bacteria</topic><topic>Leukocytes (neutrophilic)</topic><topic>Life Sciences</topic><topic>Light microscopy</topic><topic>METABOLISM</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>MICROSCOPY</topic><topic>Minerals</topic><topic>Minerals - chemistry</topic><topic>ORGANIC POLYMERS</topic><topic>Original</topic><topic>original-article</topic><topic>OXIDATION</topic><topic>Oxidation-Reduction</topic><topic>Physiology</topic><topic>Polymers</topic><topic>POLYSACCHARIDES</topic><topic>Proteobacteria - cytology</topic><topic>Proteobacteria - growth &amp; development</topic><topic>Proteobacteria - metabolism</topic><topic>Rocks</topic><topic>Saccharides</topic><topic>Scanning</topic><topic>SILICA</topic><topic>SPECTROSCOPY</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Clara S</creatorcontrib><creatorcontrib>Fakra, Sirine C</creatorcontrib><creatorcontrib>Emerson, David</creatorcontrib><creatorcontrib>Fleming, Emily J</creatorcontrib><creatorcontrib>Edwards, Katrina J</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Clara S</au><au>Fakra, Sirine C</au><au>Emerson, David</au><au>Fleming, Emily J</au><au>Edwards, Katrina J</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation</atitle><jtitle>ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>5</volume><issue>4</issue><spage>717</spage><epage>727</epage><pages>717-727</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans . Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 μm h −1 ). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger (∼100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21107443</pmid><doi>10.1038/ismej.2010.173</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof ISME Journal, 2011-04, Vol.5 (4), p.717-727
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3105749
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 631/326/41/1969
631/326/41/2528
ABSORPTION
BACTERIA
Biomedical and Life Sciences
Crystals
Ecology
ELECTRON MICROSCOPY
encrustation
ENVIRONMENTAL SCIENCES
Evolutionary Biology
Ferric Compounds - analysis
Fibrils
Filaments
FINE STRUCTURE
FLUORESCENCE
Fossils
Gallionella ferruginea
Ionizing radiation
IRON
Iron - metabolism
Iron-oxidizing bacteria
Leukocytes (neutrophilic)
Life Sciences
Light microscopy
METABOLISM
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
MICROSCOPY
Minerals
Minerals - chemistry
ORGANIC POLYMERS
Original
original-article
OXIDATION
Oxidation-Reduction
Physiology
Polymers
POLYSACCHARIDES
Proteobacteria - cytology
Proteobacteria - growth & development
Proteobacteria - metabolism
Rocks
Saccharides
Scanning
SILICA
SPECTROSCOPY
TRANSMISSION ELECTRON MICROSCOPY
Ultrastructure
title Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithotrophic%20iron-oxidizing%20bacteria%20produce%20organic%20stalks%20to%20control%20mineral%20growth:%20implications%20for%20biosignature%20formation&rft.jtitle=ISME%20Journal&rft.au=Chan,%20Clara%20S&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2011-04-01&rft.volume=5&rft.issue=4&rft.spage=717&rft.epage=727&rft.pages=717-727&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2010.173&rft_dat=%3Cproquest_pubme%3E2721518861%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1029886177&rft_id=info:pmid/21107443&rfr_iscdi=true