Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats
Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2011-01, Vol.5 (1), p.141-149 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | 1 |
container_start_page | 141 |
container_title | The ISME Journal |
container_volume | 5 |
creator | Gomez-Garcia, Maria R Davison, Michelle Blain-Hartnung, Matthew Grossman, Arthur R Bhaya, Devaki |
description | Synechococcus
sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of
Synechococcus
OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a
phn
gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate,
Synechococcus
OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly,
Synechococcus
OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available);
Synechococcus
OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related
Synechococcus
spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments. |
doi_str_mv | 10.1038/ismej.2010.96 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3105666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721067931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-679ec06f62bdf61e566a70b3e189ae19471d92033ca9e8485b1b06eb912ddcfd3</originalsourceid><addsrcrecordid>eNptkc9vFCEUx4nR2Fo9ejUYD55mhWEHhotJ0_graeJFzwSYNx02MIzAtNn_XrZbN9V4IPDyPny_8L4IvaZkQwnrP7gcYLdpSa0lf4LOqehoI5ggT09n3p6hFznvCOkE5-I5OmsJZ7Qn8hzpS18gzbq4W8CLLtOd3mc8xoSXKea6agtwgKJN9NULuxmXCVKIy-S8s9ju9RyNtlXFaTymGHBwNkXjtMdBl_wSPRu1z_DqYb9APz9_-nH1tbn-_uXb1eV1YzshSsOFBEv4yFszjJxCx7kWxDCgvdRA5VbQQbaEMasl9Nu-M9QQDkbSdhjsOLAL9PGou6wmwGBhLkl7tSQXdNqrqJ36uzO7Sd3EW8UoqWa8Crx_EEjx1wq5qOCyBe_1DHHNqpeSblm3lZV89w-5i2sdos-KklZI1nPeVao5UnUaOScYT2-hRB2yU_fZqUN2Sh783zz-wIn-E1YFNkcg19Z8A-mx7f8V3x4v1BDXBCfFe-oAVeY3RMW0Cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027938665</pqid></control><display><type>article</type><title>Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gomez-Garcia, Maria R ; Davison, Michelle ; Blain-Hartnung, Matthew ; Grossman, Arthur R ; Bhaya, Devaki</creator><creatorcontrib>Gomez-Garcia, Maria R ; Davison, Michelle ; Blain-Hartnung, Matthew ; Grossman, Arthur R ; Bhaya, Devaki</creatorcontrib><description>Synechococcus
sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of
Synechococcus
OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a
phn
gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate,
Synechococcus
OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly,
Synechococcus
OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available);
Synechococcus
OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related
Synechococcus
spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2010.96</identifier><identifier>PMID: 20631809</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/855 ; 631/326/41/2482 ; 631/326/47 ; 631/443/319 ; Aerobic respiration ; Biogeochemical cycles ; Biogeochemistry ; Biomedical and Life Sciences ; Carbon ; Cyanobacteria ; Darkness ; Ecology ; Ethane ; Ethane - metabolism ; Evolutionary Biology ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Hot Springs - microbiology ; Life Sciences ; Lyases - metabolism ; Methane ; Methane - metabolism ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; National parks ; Niches ; Nitrogen fixation ; Nutrients ; Octopus ; Organic carbon ; Organic phosphorus ; Organophosphonates - metabolism ; Original ; original-article ; Photosynthesis ; Synechococcus ; Synechococcus - genetics ; Synechococcus - growth & development ; Synechococcus - metabolism ; Terrestrial environments</subject><ispartof>The ISME Journal, 2011-01, Vol.5 (1), p.141-149</ispartof><rights>International Society for Microbial Ecology 2011</rights><rights>Copyright Nature Publishing Group Jan 2011</rights><rights>Copyright © 2011 International Society for Microbial Ecology 2011 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-679ec06f62bdf61e566a70b3e189ae19471d92033ca9e8485b1b06eb912ddcfd3</citedby><cites>FETCH-LOGICAL-c577t-679ec06f62bdf61e566a70b3e189ae19471d92033ca9e8485b1b06eb912ddcfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105666/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105666/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20631809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Garcia, Maria R</creatorcontrib><creatorcontrib>Davison, Michelle</creatorcontrib><creatorcontrib>Blain-Hartnung, Matthew</creatorcontrib><creatorcontrib>Grossman, Arthur R</creatorcontrib><creatorcontrib>Bhaya, Devaki</creatorcontrib><title>Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Synechococcus
sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of
Synechococcus
OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a
phn
gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate,
Synechococcus
OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly,
Synechococcus
OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available);
Synechococcus
OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related
Synechococcus
spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments.</description><subject>631/158/855</subject><subject>631/326/41/2482</subject><subject>631/326/47</subject><subject>631/443/319</subject><subject>Aerobic respiration</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Cyanobacteria</subject><subject>Darkness</subject><subject>Ecology</subject><subject>Ethane</subject><subject>Ethane - metabolism</subject><subject>Evolutionary Biology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hot Springs - microbiology</subject><subject>Life Sciences</subject><subject>Lyases - metabolism</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>National parks</subject><subject>Niches</subject><subject>Nitrogen fixation</subject><subject>Nutrients</subject><subject>Octopus</subject><subject>Organic carbon</subject><subject>Organic phosphorus</subject><subject>Organophosphonates - metabolism</subject><subject>Original</subject><subject>original-article</subject><subject>Photosynthesis</subject><subject>Synechococcus</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - growth & development</subject><subject>Synechococcus - metabolism</subject><subject>Terrestrial environments</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc9vFCEUx4nR2Fo9ejUYD55mhWEHhotJ0_graeJFzwSYNx02MIzAtNn_XrZbN9V4IPDyPny_8L4IvaZkQwnrP7gcYLdpSa0lf4LOqehoI5ggT09n3p6hFznvCOkE5-I5OmsJZ7Qn8hzpS18gzbq4W8CLLtOd3mc8xoSXKea6agtwgKJN9NULuxmXCVKIy-S8s9ju9RyNtlXFaTymGHBwNkXjtMdBl_wSPRu1z_DqYb9APz9_-nH1tbn-_uXb1eV1YzshSsOFBEv4yFszjJxCx7kWxDCgvdRA5VbQQbaEMasl9Nu-M9QQDkbSdhjsOLAL9PGou6wmwGBhLkl7tSQXdNqrqJ36uzO7Sd3EW8UoqWa8Crx_EEjx1wq5qOCyBe_1DHHNqpeSblm3lZV89w-5i2sdos-KklZI1nPeVao5UnUaOScYT2-hRB2yU_fZqUN2Sh783zz-wIn-E1YFNkcg19Z8A-mx7f8V3x4v1BDXBCfFe-oAVeY3RMW0Cw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Gomez-Garcia, Maria R</creator><creator>Davison, Michelle</creator><creator>Blain-Hartnung, Matthew</creator><creator>Grossman, Arthur R</creator><creator>Bhaya, Devaki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats</title><author>Gomez-Garcia, Maria R ; Davison, Michelle ; Blain-Hartnung, Matthew ; Grossman, Arthur R ; Bhaya, Devaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-679ec06f62bdf61e566a70b3e189ae19471d92033ca9e8485b1b06eb912ddcfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/158/855</topic><topic>631/326/41/2482</topic><topic>631/326/47</topic><topic>631/443/319</topic><topic>Aerobic respiration</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Cyanobacteria</topic><topic>Darkness</topic><topic>Ecology</topic><topic>Ethane</topic><topic>Ethane - metabolism</topic><topic>Evolutionary Biology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hot Springs - microbiology</topic><topic>Life Sciences</topic><topic>Lyases - metabolism</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>National parks</topic><topic>Niches</topic><topic>Nitrogen fixation</topic><topic>Nutrients</topic><topic>Octopus</topic><topic>Organic carbon</topic><topic>Organic phosphorus</topic><topic>Organophosphonates - metabolism</topic><topic>Original</topic><topic>original-article</topic><topic>Photosynthesis</topic><topic>Synechococcus</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - growth & development</topic><topic>Synechococcus - metabolism</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Garcia, Maria R</creatorcontrib><creatorcontrib>Davison, Michelle</creatorcontrib><creatorcontrib>Blain-Hartnung, Matthew</creatorcontrib><creatorcontrib>Grossman, Arthur R</creatorcontrib><creatorcontrib>Bhaya, Devaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Garcia, Maria R</au><au>Davison, Michelle</au><au>Blain-Hartnung, Matthew</au><au>Grossman, Arthur R</au><au>Bhaya, Devaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>5</volume><issue>1</issue><spage>141</spage><epage>149</epage><pages>141-149</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Synechococcus
sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of
Synechococcus
OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a
phn
gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate,
Synechococcus
OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly,
Synechococcus
OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available);
Synechococcus
OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related
Synechococcus
spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20631809</pmid><doi>10.1038/ismej.2010.96</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2011-01, Vol.5 (1), p.141-149 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3105666 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/158/855 631/326/41/2482 631/326/47 631/443/319 Aerobic respiration Biogeochemical cycles Biogeochemistry Biomedical and Life Sciences Carbon Cyanobacteria Darkness Ecology Ethane Ethane - metabolism Evolutionary Biology Gene Expression Profiling Gene Expression Regulation, Bacterial Hot Springs - microbiology Life Sciences Lyases - metabolism Methane Methane - metabolism Microbial Ecology Microbial Genetics and Genomics Microbiology National parks Niches Nitrogen fixation Nutrients Octopus Organic carbon Organic phosphorus Organophosphonates - metabolism Original original-article Photosynthesis Synechococcus Synechococcus - genetics Synechococcus - growth & development Synechococcus - metabolism Terrestrial environments |
title | Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20pathways%20for%20phosphonate%20metabolism%20in%20thermophilic%20cyanobacteria%20from%20microbial%20mats&rft.jtitle=The%20ISME%20Journal&rft.au=Gomez-Garcia,%20Maria%20R&rft.date=2011-01-01&rft.volume=5&rft.issue=1&rft.spage=141&rft.epage=149&rft.pages=141-149&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2010.96&rft_dat=%3Cproquest_pubme%3E2721067931%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027938665&rft_id=info:pmid/20631809&rfr_iscdi=true |