Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats

Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2011-01, Vol.5 (1), p.141-149
Hauptverfasser: Gomez-Garcia, Maria R, Davison, Michelle, Blain-Hartnung, Matthew, Grossman, Arthur R, Bhaya, Devaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue 1
container_start_page 141
container_title The ISME Journal
container_volume 5
creator Gomez-Garcia, Maria R
Davison, Michelle
Blain-Hartnung, Matthew
Grossman, Arthur R
Bhaya, Devaki
description Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of Synechococcus OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a phn gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate, Synechococcus OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly, Synechococcus OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available); Synechococcus OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related Synechococcus spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments.
doi_str_mv 10.1038/ismej.2010.96
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3105666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721067931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-679ec06f62bdf61e566a70b3e189ae19471d92033ca9e8485b1b06eb912ddcfd3</originalsourceid><addsrcrecordid>eNptkc9vFCEUx4nR2Fo9ejUYD55mhWEHhotJ0_graeJFzwSYNx02MIzAtNn_XrZbN9V4IPDyPny_8L4IvaZkQwnrP7gcYLdpSa0lf4LOqehoI5ggT09n3p6hFznvCOkE5-I5OmsJZ7Qn8hzpS18gzbq4W8CLLtOd3mc8xoSXKea6agtwgKJN9NULuxmXCVKIy-S8s9ju9RyNtlXFaTymGHBwNkXjtMdBl_wSPRu1z_DqYb9APz9_-nH1tbn-_uXb1eV1YzshSsOFBEv4yFszjJxCx7kWxDCgvdRA5VbQQbaEMasl9Nu-M9QQDkbSdhjsOLAL9PGou6wmwGBhLkl7tSQXdNqrqJ36uzO7Sd3EW8UoqWa8Crx_EEjx1wq5qOCyBe_1DHHNqpeSblm3lZV89w-5i2sdos-KklZI1nPeVao5UnUaOScYT2-hRB2yU_fZqUN2Sh783zz-wIn-E1YFNkcg19Z8A-mx7f8V3x4v1BDXBCfFe-oAVeY3RMW0Cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027938665</pqid></control><display><type>article</type><title>Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gomez-Garcia, Maria R ; Davison, Michelle ; Blain-Hartnung, Matthew ; Grossman, Arthur R ; Bhaya, Devaki</creator><creatorcontrib>Gomez-Garcia, Maria R ; Davison, Michelle ; Blain-Hartnung, Matthew ; Grossman, Arthur R ; Bhaya, Devaki</creatorcontrib><description>Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of Synechococcus OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a phn gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate, Synechococcus OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly, Synechococcus OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available); Synechococcus OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related Synechococcus spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2010.96</identifier><identifier>PMID: 20631809</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/855 ; 631/326/41/2482 ; 631/326/47 ; 631/443/319 ; Aerobic respiration ; Biogeochemical cycles ; Biogeochemistry ; Biomedical and Life Sciences ; Carbon ; Cyanobacteria ; Darkness ; Ecology ; Ethane ; Ethane - metabolism ; Evolutionary Biology ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Hot Springs - microbiology ; Life Sciences ; Lyases - metabolism ; Methane ; Methane - metabolism ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; National parks ; Niches ; Nitrogen fixation ; Nutrients ; Octopus ; Organic carbon ; Organic phosphorus ; Organophosphonates - metabolism ; Original ; original-article ; Photosynthesis ; Synechococcus ; Synechococcus - genetics ; Synechococcus - growth &amp; development ; Synechococcus - metabolism ; Terrestrial environments</subject><ispartof>The ISME Journal, 2011-01, Vol.5 (1), p.141-149</ispartof><rights>International Society for Microbial Ecology 2011</rights><rights>Copyright Nature Publishing Group Jan 2011</rights><rights>Copyright © 2011 International Society for Microbial Ecology 2011 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-679ec06f62bdf61e566a70b3e189ae19471d92033ca9e8485b1b06eb912ddcfd3</citedby><cites>FETCH-LOGICAL-c577t-679ec06f62bdf61e566a70b3e189ae19471d92033ca9e8485b1b06eb912ddcfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105666/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105666/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20631809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Garcia, Maria R</creatorcontrib><creatorcontrib>Davison, Michelle</creatorcontrib><creatorcontrib>Blain-Hartnung, Matthew</creatorcontrib><creatorcontrib>Grossman, Arthur R</creatorcontrib><creatorcontrib>Bhaya, Devaki</creatorcontrib><title>Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of Synechococcus OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a phn gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate, Synechococcus OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly, Synechococcus OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available); Synechococcus OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related Synechococcus spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments.</description><subject>631/158/855</subject><subject>631/326/41/2482</subject><subject>631/326/47</subject><subject>631/443/319</subject><subject>Aerobic respiration</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Cyanobacteria</subject><subject>Darkness</subject><subject>Ecology</subject><subject>Ethane</subject><subject>Ethane - metabolism</subject><subject>Evolutionary Biology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hot Springs - microbiology</subject><subject>Life Sciences</subject><subject>Lyases - metabolism</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>National parks</subject><subject>Niches</subject><subject>Nitrogen fixation</subject><subject>Nutrients</subject><subject>Octopus</subject><subject>Organic carbon</subject><subject>Organic phosphorus</subject><subject>Organophosphonates - metabolism</subject><subject>Original</subject><subject>original-article</subject><subject>Photosynthesis</subject><subject>Synechococcus</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - growth &amp; development</subject><subject>Synechococcus - metabolism</subject><subject>Terrestrial environments</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc9vFCEUx4nR2Fo9ejUYD55mhWEHhotJ0_graeJFzwSYNx02MIzAtNn_XrZbN9V4IPDyPny_8L4IvaZkQwnrP7gcYLdpSa0lf4LOqehoI5ggT09n3p6hFznvCOkE5-I5OmsJZ7Qn8hzpS18gzbq4W8CLLtOd3mc8xoSXKea6agtwgKJN9NULuxmXCVKIy-S8s9ju9RyNtlXFaTymGHBwNkXjtMdBl_wSPRu1z_DqYb9APz9_-nH1tbn-_uXb1eV1YzshSsOFBEv4yFszjJxCx7kWxDCgvdRA5VbQQbaEMasl9Nu-M9QQDkbSdhjsOLAL9PGou6wmwGBhLkl7tSQXdNqrqJ36uzO7Sd3EW8UoqWa8Crx_EEjx1wq5qOCyBe_1DHHNqpeSblm3lZV89w-5i2sdos-KklZI1nPeVao5UnUaOScYT2-hRB2yU_fZqUN2Sh783zz-wIn-E1YFNkcg19Z8A-mx7f8V3x4v1BDXBCfFe-oAVeY3RMW0Cw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Gomez-Garcia, Maria R</creator><creator>Davison, Michelle</creator><creator>Blain-Hartnung, Matthew</creator><creator>Grossman, Arthur R</creator><creator>Bhaya, Devaki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats</title><author>Gomez-Garcia, Maria R ; Davison, Michelle ; Blain-Hartnung, Matthew ; Grossman, Arthur R ; Bhaya, Devaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-679ec06f62bdf61e566a70b3e189ae19471d92033ca9e8485b1b06eb912ddcfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/158/855</topic><topic>631/326/41/2482</topic><topic>631/326/47</topic><topic>631/443/319</topic><topic>Aerobic respiration</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Cyanobacteria</topic><topic>Darkness</topic><topic>Ecology</topic><topic>Ethane</topic><topic>Ethane - metabolism</topic><topic>Evolutionary Biology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hot Springs - microbiology</topic><topic>Life Sciences</topic><topic>Lyases - metabolism</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>National parks</topic><topic>Niches</topic><topic>Nitrogen fixation</topic><topic>Nutrients</topic><topic>Octopus</topic><topic>Organic carbon</topic><topic>Organic phosphorus</topic><topic>Organophosphonates - metabolism</topic><topic>Original</topic><topic>original-article</topic><topic>Photosynthesis</topic><topic>Synechococcus</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - growth &amp; development</topic><topic>Synechococcus - metabolism</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Garcia, Maria R</creatorcontrib><creatorcontrib>Davison, Michelle</creatorcontrib><creatorcontrib>Blain-Hartnung, Matthew</creatorcontrib><creatorcontrib>Grossman, Arthur R</creatorcontrib><creatorcontrib>Bhaya, Devaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Garcia, Maria R</au><au>Davison, Michelle</au><au>Blain-Hartnung, Matthew</au><au>Grossman, Arthur R</au><au>Bhaya, Devaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>5</volume><issue>1</issue><spage>141</spage><epage>149</epage><pages>141-149</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of Synechococcus OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a phn gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate, Synechococcus OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly, Synechococcus OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available); Synechococcus OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related Synechococcus spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20631809</pmid><doi>10.1038/ismej.2010.96</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2011-01, Vol.5 (1), p.141-149
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3105666
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 631/158/855
631/326/41/2482
631/326/47
631/443/319
Aerobic respiration
Biogeochemical cycles
Biogeochemistry
Biomedical and Life Sciences
Carbon
Cyanobacteria
Darkness
Ecology
Ethane
Ethane - metabolism
Evolutionary Biology
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Hot Springs - microbiology
Life Sciences
Lyases - metabolism
Methane
Methane - metabolism
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
National parks
Niches
Nitrogen fixation
Nutrients
Octopus
Organic carbon
Organic phosphorus
Organophosphonates - metabolism
Original
original-article
Photosynthesis
Synechococcus
Synechococcus - genetics
Synechococcus - growth & development
Synechococcus - metabolism
Terrestrial environments
title Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20pathways%20for%20phosphonate%20metabolism%20in%20thermophilic%20cyanobacteria%20from%20microbial%20mats&rft.jtitle=The%20ISME%20Journal&rft.au=Gomez-Garcia,%20Maria%20R&rft.date=2011-01-01&rft.volume=5&rft.issue=1&rft.spage=141&rft.epage=149&rft.pages=141-149&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2010.96&rft_dat=%3Cproquest_pubme%3E2721067931%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027938665&rft_id=info:pmid/20631809&rfr_iscdi=true