Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts

Purpose Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine and molecular imaging 2011-07, Vol.38 (7), p.1257-1266
Hauptverfasser: Schroeder, Rogier P. J., van Weerden, W. M., Krenning, E. P., Bangma, C. H., Berndsen, S., Grievink-de Ligt, C. H., Groen, H. C., Reneman, S., de Blois, E., Breeman, W. A. P., de Jong, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1266
container_issue 7
container_start_page 1257
container_title European journal of nuclear medicine and molecular imaging
container_volume 38
creator Schroeder, Rogier P. J.
van Weerden, W. M.
Krenning, E. P.
Bangma, C. H.
Berndsen, S.
Grievink-de Ligt, C. H.
Groen, H. C.
Reneman, S.
de Blois, E.
Breeman, W. A. P.
de Jong, M.
description Purpose Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activity, metabolism-based tracers are also being used for PC imaging. We compared GRPR-based targeting using the 68 Ga-labelled bombesin analogue AMBA with metabolism-based targeting using 18 F-methylcholine ( 18 F-FCH) in nude mice bearing human prostate VCaP xenografts. Methods PET and biodistribution studies were performed with both 68 Ga-AMBA and 18 F-FCH in all VCaP tumour-bearing mice, with PC-3 tumour-bearing mice as reference. Scanning started immediately after injection. Dynamic PET scans were reconstructed and analysed quantitatively. Biodistribution of tracers and tissue uptake was expressed as percent of injected dose per gram tissue (%ID/g). Results All tumours were clearly visualized using 68 Ga-AMBA. 18 F-FCH showed significantly less contrast due to poor tumour-to-background ratios. Quantitative PET analyses showed fast tumour uptake and high retention for both tracers. VCaP tumour uptake values determined from PET at steady-state were 6.7 ± 1.4%ID/g (20–30 min after injection, N  = 8) for 68 Ga-AMBA and 1.6 ± 0.5%ID/g (10–20 min after injection, N  = 8) for 18 F-FCH, which were significantly different ( p  
doi_str_mv 10.1007/s00259-011-1775-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3104004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2361217451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-a86a5e5d4c6c5c12335a341a31202edb02acf383e2caa546270560b7310413693</originalsourceid><addsrcrecordid>eNp1ks1u1TAQhSMEoqXwAGyQxYZVYGzH-dkgoQoKUiU2sLYmvpNcV4kdbOeqPBsvh8Mtlx-pK490vjkej09RPOfwmgM0byKAUF0JnJe8aVQpHxTnvOZd2UDbPTzVDZwVT2K8AeCtaLvHxZngleSya8-LH1cYU7CuDDQRRutGttCS7I5YIJMrH8oeI-1YwjBS2oD1F9b7uadcMXQ4-XGlyGxkcV0oWB9Y8mymhL2fbJzvsTD7rDpiQ-az0cEePLMzjpvmB7ZfZ3RsCT4mTMQMOkOB3ZLzY8AhxafFowGnSM_uzovi64f3Xy4_ltefrz5dvrsujQJIJbY1KlK7ytRGGS6kVCgrjpILELTrQaAZZCtJGERV1aIBVUPfSA4Vl3UnL4q3R99l7WfaGXIp4KSXkGcN37VHq_9VnN3r0R_05gBQZYNXdwbBf8uLSnq20dA0oSO_Rt02tRC1ankmX_5H3vg15AVnqO7yT7YgM8SPkMmriYGG0ygc9BYMfQyGzsHQWzD01vPi7zecOn4nIQPiCMQsuZHCn5vvd_0JnBHJBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869070803</pqid></control><display><type>article</type><title>Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Schroeder, Rogier P. J. ; van Weerden, W. M. ; Krenning, E. P. ; Bangma, C. H. ; Berndsen, S. ; Grievink-de Ligt, C. H. ; Groen, H. C. ; Reneman, S. ; de Blois, E. ; Breeman, W. A. P. ; de Jong, M.</creator><creatorcontrib>Schroeder, Rogier P. J. ; van Weerden, W. M. ; Krenning, E. P. ; Bangma, C. H. ; Berndsen, S. ; Grievink-de Ligt, C. H. ; Groen, H. C. ; Reneman, S. ; de Blois, E. ; Breeman, W. A. P. ; de Jong, M.</creatorcontrib><description>Purpose Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activity, metabolism-based tracers are also being used for PC imaging. We compared GRPR-based targeting using the 68 Ga-labelled bombesin analogue AMBA with metabolism-based targeting using 18 F-methylcholine ( 18 F-FCH) in nude mice bearing human prostate VCaP xenografts. Methods PET and biodistribution studies were performed with both 68 Ga-AMBA and 18 F-FCH in all VCaP tumour-bearing mice, with PC-3 tumour-bearing mice as reference. Scanning started immediately after injection. Dynamic PET scans were reconstructed and analysed quantitatively. Biodistribution of tracers and tissue uptake was expressed as percent of injected dose per gram tissue (%ID/g). Results All tumours were clearly visualized using 68 Ga-AMBA. 18 F-FCH showed significantly less contrast due to poor tumour-to-background ratios. Quantitative PET analyses showed fast tumour uptake and high retention for both tracers. VCaP tumour uptake values determined from PET at steady-state were 6.7 ± 1.4%ID/g (20–30 min after injection, N  = 8) for 68 Ga-AMBA and 1.6 ± 0.5%ID/g (10–20 min after injection, N  = 8) for 18 F-FCH, which were significantly different ( p  &lt;0.001). The results in PC-3 tumour-bearing mice were comparable. Biodistribution data were in accordance with the PET results showing VCaP tumour uptake values of 9.5 ± 4.8%ID/g ( N  = 8) for 68 Ga-AMBA and 2.1 ± 0.4%ID/g ( N  = 8) for 18 F-FCH. Apart from the GRPR-expressing organs, uptake in all organs was lower for 68 Ga-AMBA than for 18 F-FCH. Conclusion Tumour uptake of 68 Ga-AMBA was higher while overall background activity was lower than observed for 18 F-FCH in the same PC-bearing mice. These results suggest that peptide receptor-based targeting using the bombesin analogue AMBA is superior to metabolism-based targeting using choline for scintigraphy of PC.</description><identifier>ISSN: 1619-7070</identifier><identifier>EISSN: 1619-7089</identifier><identifier>DOI: 10.1007/s00259-011-1775-3</identifier><identifier>PMID: 21431398</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animals ; Bombesin - analogs &amp; derivatives ; Bombesin - metabolism ; Bombesin - pharmacokinetics ; Cardiology ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; Choline - analogs &amp; derivatives ; Choline - chemistry ; Choline - metabolism ; Choline - pharmacokinetics ; Fluorine Radioisotopes ; Gallium Radioisotopes ; Humans ; Imaging ; Male ; Medicine ; Medicine &amp; Public Health ; Metabolic disorders ; Mice ; Nuclear Medicine ; Oligopeptides - chemistry ; Oligopeptides - metabolism ; Oligopeptides - pharmacokinetics ; Oncology ; Original ; Original Article ; Orthopedics ; Peptides ; Positron-Emission Tomography - methods ; Prostate cancer ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; Radiology ; Receptors, Bombesin - metabolism ; Tomography ; Xenotransplantation</subject><ispartof>European journal of nuclear medicine and molecular imaging, 2011-07, Vol.38 (7), p.1257-1266</ispartof><rights>The Author(s) 2011</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-a86a5e5d4c6c5c12335a341a31202edb02acf383e2caa546270560b7310413693</citedby><cites>FETCH-LOGICAL-c500t-a86a5e5d4c6c5c12335a341a31202edb02acf383e2caa546270560b7310413693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00259-011-1775-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00259-011-1775-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21431398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroeder, Rogier P. J.</creatorcontrib><creatorcontrib>van Weerden, W. M.</creatorcontrib><creatorcontrib>Krenning, E. P.</creatorcontrib><creatorcontrib>Bangma, C. H.</creatorcontrib><creatorcontrib>Berndsen, S.</creatorcontrib><creatorcontrib>Grievink-de Ligt, C. H.</creatorcontrib><creatorcontrib>Groen, H. C.</creatorcontrib><creatorcontrib>Reneman, S.</creatorcontrib><creatorcontrib>de Blois, E.</creatorcontrib><creatorcontrib>Breeman, W. A. P.</creatorcontrib><creatorcontrib>de Jong, M.</creatorcontrib><title>Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts</title><title>European journal of nuclear medicine and molecular imaging</title><addtitle>Eur J Nucl Med Mol Imaging</addtitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><description>Purpose Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activity, metabolism-based tracers are also being used for PC imaging. We compared GRPR-based targeting using the 68 Ga-labelled bombesin analogue AMBA with metabolism-based targeting using 18 F-methylcholine ( 18 F-FCH) in nude mice bearing human prostate VCaP xenografts. Methods PET and biodistribution studies were performed with both 68 Ga-AMBA and 18 F-FCH in all VCaP tumour-bearing mice, with PC-3 tumour-bearing mice as reference. Scanning started immediately after injection. Dynamic PET scans were reconstructed and analysed quantitatively. Biodistribution of tracers and tissue uptake was expressed as percent of injected dose per gram tissue (%ID/g). Results All tumours were clearly visualized using 68 Ga-AMBA. 18 F-FCH showed significantly less contrast due to poor tumour-to-background ratios. Quantitative PET analyses showed fast tumour uptake and high retention for both tracers. VCaP tumour uptake values determined from PET at steady-state were 6.7 ± 1.4%ID/g (20–30 min after injection, N  = 8) for 68 Ga-AMBA and 1.6 ± 0.5%ID/g (10–20 min after injection, N  = 8) for 18 F-FCH, which were significantly different ( p  &lt;0.001). The results in PC-3 tumour-bearing mice were comparable. Biodistribution data were in accordance with the PET results showing VCaP tumour uptake values of 9.5 ± 4.8%ID/g ( N  = 8) for 68 Ga-AMBA and 2.1 ± 0.4%ID/g ( N  = 8) for 18 F-FCH. Apart from the GRPR-expressing organs, uptake in all organs was lower for 68 Ga-AMBA than for 18 F-FCH. Conclusion Tumour uptake of 68 Ga-AMBA was higher while overall background activity was lower than observed for 18 F-FCH in the same PC-bearing mice. These results suggest that peptide receptor-based targeting using the bombesin analogue AMBA is superior to metabolism-based targeting using choline for scintigraphy of PC.</description><subject>Animals</subject><subject>Bombesin - analogs &amp; derivatives</subject><subject>Bombesin - metabolism</subject><subject>Bombesin - pharmacokinetics</subject><subject>Cardiology</subject><subject>Cell Line, Tumor</subject><subject>Cell Transformation, Neoplastic</subject><subject>Choline - analogs &amp; derivatives</subject><subject>Choline - chemistry</subject><subject>Choline - metabolism</subject><subject>Choline - pharmacokinetics</subject><subject>Fluorine Radioisotopes</subject><subject>Gallium Radioisotopes</subject><subject>Humans</subject><subject>Imaging</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic disorders</subject><subject>Mice</subject><subject>Nuclear Medicine</subject><subject>Oligopeptides - chemistry</subject><subject>Oligopeptides - metabolism</subject><subject>Oligopeptides - pharmacokinetics</subject><subject>Oncology</subject><subject>Original</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Peptides</subject><subject>Positron-Emission Tomography - methods</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Radiology</subject><subject>Receptors, Bombesin - metabolism</subject><subject>Tomography</subject><subject>Xenotransplantation</subject><issn>1619-7070</issn><issn>1619-7089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1ks1u1TAQhSMEoqXwAGyQxYZVYGzH-dkgoQoKUiU2sLYmvpNcV4kdbOeqPBsvh8Mtlx-pK490vjkej09RPOfwmgM0byKAUF0JnJe8aVQpHxTnvOZd2UDbPTzVDZwVT2K8AeCtaLvHxZngleSya8-LH1cYU7CuDDQRRutGttCS7I5YIJMrH8oeI-1YwjBS2oD1F9b7uadcMXQ4-XGlyGxkcV0oWB9Y8mymhL2fbJzvsTD7rDpiQ-az0cEePLMzjpvmB7ZfZ3RsCT4mTMQMOkOB3ZLzY8AhxafFowGnSM_uzovi64f3Xy4_ltefrz5dvrsujQJIJbY1KlK7ytRGGS6kVCgrjpILELTrQaAZZCtJGERV1aIBVUPfSA4Vl3UnL4q3R99l7WfaGXIp4KSXkGcN37VHq_9VnN3r0R_05gBQZYNXdwbBf8uLSnq20dA0oSO_Rt02tRC1ankmX_5H3vg15AVnqO7yT7YgM8SPkMmriYGG0ygc9BYMfQyGzsHQWzD01vPi7zecOn4nIQPiCMQsuZHCn5vvd_0JnBHJBw</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Schroeder, Rogier P. J.</creator><creator>van Weerden, W. M.</creator><creator>Krenning, E. P.</creator><creator>Bangma, C. H.</creator><creator>Berndsen, S.</creator><creator>Grievink-de Ligt, C. H.</creator><creator>Groen, H. C.</creator><creator>Reneman, S.</creator><creator>de Blois, E.</creator><creator>Breeman, W. A. P.</creator><creator>de Jong, M.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20110701</creationdate><title>Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts</title><author>Schroeder, Rogier P. J. ; van Weerden, W. M. ; Krenning, E. P. ; Bangma, C. H. ; Berndsen, S. ; Grievink-de Ligt, C. H. ; Groen, H. C. ; Reneman, S. ; de Blois, E. ; Breeman, W. A. P. ; de Jong, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-a86a5e5d4c6c5c12335a341a31202edb02acf383e2caa546270560b7310413693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Bombesin - analogs &amp; derivatives</topic><topic>Bombesin - metabolism</topic><topic>Bombesin - pharmacokinetics</topic><topic>Cardiology</topic><topic>Cell Line, Tumor</topic><topic>Cell Transformation, Neoplastic</topic><topic>Choline - analogs &amp; derivatives</topic><topic>Choline - chemistry</topic><topic>Choline - metabolism</topic><topic>Choline - pharmacokinetics</topic><topic>Fluorine Radioisotopes</topic><topic>Gallium Radioisotopes</topic><topic>Humans</topic><topic>Imaging</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic disorders</topic><topic>Mice</topic><topic>Nuclear Medicine</topic><topic>Oligopeptides - chemistry</topic><topic>Oligopeptides - metabolism</topic><topic>Oligopeptides - pharmacokinetics</topic><topic>Oncology</topic><topic>Original</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Peptides</topic><topic>Positron-Emission Tomography - methods</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Radiology</topic><topic>Receptors, Bombesin - metabolism</topic><topic>Tomography</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Rogier P. J.</creatorcontrib><creatorcontrib>van Weerden, W. M.</creatorcontrib><creatorcontrib>Krenning, E. P.</creatorcontrib><creatorcontrib>Bangma, C. H.</creatorcontrib><creatorcontrib>Berndsen, S.</creatorcontrib><creatorcontrib>Grievink-de Ligt, C. H.</creatorcontrib><creatorcontrib>Groen, H. C.</creatorcontrib><creatorcontrib>Reneman, S.</creatorcontrib><creatorcontrib>de Blois, E.</creatorcontrib><creatorcontrib>Breeman, W. A. P.</creatorcontrib><creatorcontrib>de Jong, M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of nuclear medicine and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Rogier P. J.</au><au>van Weerden, W. M.</au><au>Krenning, E. P.</au><au>Bangma, C. H.</au><au>Berndsen, S.</au><au>Grievink-de Ligt, C. H.</au><au>Groen, H. C.</au><au>Reneman, S.</au><au>de Blois, E.</au><au>Breeman, W. A. P.</au><au>de Jong, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts</atitle><jtitle>European journal of nuclear medicine and molecular imaging</jtitle><stitle>Eur J Nucl Med Mol Imaging</stitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>38</volume><issue>7</issue><spage>1257</spage><epage>1266</epage><pages>1257-1266</pages><issn>1619-7070</issn><eissn>1619-7089</eissn><abstract>Purpose Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activity, metabolism-based tracers are also being used for PC imaging. We compared GRPR-based targeting using the 68 Ga-labelled bombesin analogue AMBA with metabolism-based targeting using 18 F-methylcholine ( 18 F-FCH) in nude mice bearing human prostate VCaP xenografts. Methods PET and biodistribution studies were performed with both 68 Ga-AMBA and 18 F-FCH in all VCaP tumour-bearing mice, with PC-3 tumour-bearing mice as reference. Scanning started immediately after injection. Dynamic PET scans were reconstructed and analysed quantitatively. Biodistribution of tracers and tissue uptake was expressed as percent of injected dose per gram tissue (%ID/g). Results All tumours were clearly visualized using 68 Ga-AMBA. 18 F-FCH showed significantly less contrast due to poor tumour-to-background ratios. Quantitative PET analyses showed fast tumour uptake and high retention for both tracers. VCaP tumour uptake values determined from PET at steady-state were 6.7 ± 1.4%ID/g (20–30 min after injection, N  = 8) for 68 Ga-AMBA and 1.6 ± 0.5%ID/g (10–20 min after injection, N  = 8) for 18 F-FCH, which were significantly different ( p  &lt;0.001). The results in PC-3 tumour-bearing mice were comparable. Biodistribution data were in accordance with the PET results showing VCaP tumour uptake values of 9.5 ± 4.8%ID/g ( N  = 8) for 68 Ga-AMBA and 2.1 ± 0.4%ID/g ( N  = 8) for 18 F-FCH. Apart from the GRPR-expressing organs, uptake in all organs was lower for 68 Ga-AMBA than for 18 F-FCH. Conclusion Tumour uptake of 68 Ga-AMBA was higher while overall background activity was lower than observed for 18 F-FCH in the same PC-bearing mice. These results suggest that peptide receptor-based targeting using the bombesin analogue AMBA is superior to metabolism-based targeting using choline for scintigraphy of PC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21431398</pmid><doi>10.1007/s00259-011-1775-3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1619-7070
ispartof European journal of nuclear medicine and molecular imaging, 2011-07, Vol.38 (7), p.1257-1266
issn 1619-7070
1619-7089
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3104004
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Bombesin - analogs & derivatives
Bombesin - metabolism
Bombesin - pharmacokinetics
Cardiology
Cell Line, Tumor
Cell Transformation, Neoplastic
Choline - analogs & derivatives
Choline - chemistry
Choline - metabolism
Choline - pharmacokinetics
Fluorine Radioisotopes
Gallium Radioisotopes
Humans
Imaging
Male
Medicine
Medicine & Public Health
Metabolic disorders
Mice
Nuclear Medicine
Oligopeptides - chemistry
Oligopeptides - metabolism
Oligopeptides - pharmacokinetics
Oncology
Original
Original Article
Orthopedics
Peptides
Positron-Emission Tomography - methods
Prostate cancer
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
Radiology
Receptors, Bombesin - metabolism
Tomography
Xenotransplantation
title Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gastrin-releasing%20peptide%20receptor-based%20targeting%20using%20bombesin%20analogues%20is%20superior%20to%20metabolism-based%20targeting%20using%20choline%20for%20in%20vivo%20imaging%20of%20human%20prostate%20cancer%20xenografts&rft.jtitle=European%20journal%20of%20nuclear%20medicine%20and%20molecular%20imaging&rft.au=Schroeder,%20Rogier%20P.%20J.&rft.date=2011-07-01&rft.volume=38&rft.issue=7&rft.spage=1257&rft.epage=1266&rft.pages=1257-1266&rft.issn=1619-7070&rft.eissn=1619-7089&rft_id=info:doi/10.1007/s00259-011-1775-3&rft_dat=%3Cproquest_pubme%3E2361217451%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869070803&rft_id=info:pmid/21431398&rfr_iscdi=true