Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts
Purpose Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activi...
Gespeichert in:
Veröffentlicht in: | European journal of nuclear medicine and molecular imaging 2011-07, Vol.38 (7), p.1257-1266 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1266 |
---|---|
container_issue | 7 |
container_start_page | 1257 |
container_title | European journal of nuclear medicine and molecular imaging |
container_volume | 38 |
creator | Schroeder, Rogier P. J. van Weerden, W. M. Krenning, E. P. Bangma, C. H. Berndsen, S. Grievink-de Ligt, C. H. Groen, H. C. Reneman, S. de Blois, E. Breeman, W. A. P. de Jong, M. |
description | Purpose
Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activity, metabolism-based tracers are also being used for PC imaging. We compared GRPR-based targeting using the
68
Ga-labelled bombesin analogue AMBA with metabolism-based targeting using
18
F-methylcholine (
18
F-FCH) in nude mice bearing human prostate VCaP xenografts.
Methods
PET and biodistribution studies were performed with both
68
Ga-AMBA and
18
F-FCH in all VCaP tumour-bearing mice, with PC-3 tumour-bearing mice as reference. Scanning started immediately after injection. Dynamic PET scans were reconstructed and analysed quantitatively. Biodistribution of tracers and tissue uptake was expressed as percent of injected dose per gram tissue (%ID/g).
Results
All tumours were clearly visualized using
68
Ga-AMBA.
18
F-FCH showed significantly less contrast due to poor tumour-to-background ratios. Quantitative PET analyses showed fast tumour uptake and high retention for both tracers. VCaP tumour uptake values determined from PET at steady-state were 6.7 ± 1.4%ID/g (20–30 min after injection,
N
= 8) for
68
Ga-AMBA and 1.6 ± 0.5%ID/g (10–20 min after injection,
N
= 8) for
18
F-FCH, which were significantly different (
p
|
doi_str_mv | 10.1007/s00259-011-1775-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3104004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2361217451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-a86a5e5d4c6c5c12335a341a31202edb02acf383e2caa546270560b7310413693</originalsourceid><addsrcrecordid>eNp1ks1u1TAQhSMEoqXwAGyQxYZVYGzH-dkgoQoKUiU2sLYmvpNcV4kdbOeqPBsvh8Mtlx-pK490vjkej09RPOfwmgM0byKAUF0JnJe8aVQpHxTnvOZd2UDbPTzVDZwVT2K8AeCtaLvHxZngleSya8-LH1cYU7CuDDQRRutGttCS7I5YIJMrH8oeI-1YwjBS2oD1F9b7uadcMXQ4-XGlyGxkcV0oWB9Y8mymhL2fbJzvsTD7rDpiQ-az0cEePLMzjpvmB7ZfZ3RsCT4mTMQMOkOB3ZLzY8AhxafFowGnSM_uzovi64f3Xy4_ltefrz5dvrsujQJIJbY1KlK7ytRGGS6kVCgrjpILELTrQaAZZCtJGERV1aIBVUPfSA4Vl3UnL4q3R99l7WfaGXIp4KSXkGcN37VHq_9VnN3r0R_05gBQZYNXdwbBf8uLSnq20dA0oSO_Rt02tRC1ankmX_5H3vg15AVnqO7yT7YgM8SPkMmriYGG0ygc9BYMfQyGzsHQWzD01vPi7zecOn4nIQPiCMQsuZHCn5vvd_0JnBHJBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869070803</pqid></control><display><type>article</type><title>Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Schroeder, Rogier P. J. ; van Weerden, W. M. ; Krenning, E. P. ; Bangma, C. H. ; Berndsen, S. ; Grievink-de Ligt, C. H. ; Groen, H. C. ; Reneman, S. ; de Blois, E. ; Breeman, W. A. P. ; de Jong, M.</creator><creatorcontrib>Schroeder, Rogier P. J. ; van Weerden, W. M. ; Krenning, E. P. ; Bangma, C. H. ; Berndsen, S. ; Grievink-de Ligt, C. H. ; Groen, H. C. ; Reneman, S. ; de Blois, E. ; Breeman, W. A. P. ; de Jong, M.</creatorcontrib><description>Purpose
Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activity, metabolism-based tracers are also being used for PC imaging. We compared GRPR-based targeting using the
68
Ga-labelled bombesin analogue AMBA with metabolism-based targeting using
18
F-methylcholine (
18
F-FCH) in nude mice bearing human prostate VCaP xenografts.
Methods
PET and biodistribution studies were performed with both
68
Ga-AMBA and
18
F-FCH in all VCaP tumour-bearing mice, with PC-3 tumour-bearing mice as reference. Scanning started immediately after injection. Dynamic PET scans were reconstructed and analysed quantitatively. Biodistribution of tracers and tissue uptake was expressed as percent of injected dose per gram tissue (%ID/g).
Results
All tumours were clearly visualized using
68
Ga-AMBA.
18
F-FCH showed significantly less contrast due to poor tumour-to-background ratios. Quantitative PET analyses showed fast tumour uptake and high retention for both tracers. VCaP tumour uptake values determined from PET at steady-state were 6.7 ± 1.4%ID/g (20–30 min after injection,
N
= 8) for
68
Ga-AMBA and 1.6 ± 0.5%ID/g (10–20 min after injection,
N
= 8) for
18
F-FCH, which were significantly different (
p
<0.001). The results in PC-3 tumour-bearing mice were comparable. Biodistribution data were in accordance with the PET results showing VCaP tumour uptake values of 9.5 ± 4.8%ID/g (
N
= 8) for
68
Ga-AMBA and 2.1 ± 0.4%ID/g (
N
= 8) for
18
F-FCH. Apart from the GRPR-expressing organs, uptake in all organs was lower for
68
Ga-AMBA than for
18
F-FCH.
Conclusion
Tumour uptake of
68
Ga-AMBA was higher while overall background activity was lower than observed for
18
F-FCH in the same PC-bearing mice. These results suggest that peptide receptor-based targeting using the bombesin analogue AMBA is superior to metabolism-based targeting using choline for scintigraphy of PC.</description><identifier>ISSN: 1619-7070</identifier><identifier>EISSN: 1619-7089</identifier><identifier>DOI: 10.1007/s00259-011-1775-3</identifier><identifier>PMID: 21431398</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animals ; Bombesin - analogs & derivatives ; Bombesin - metabolism ; Bombesin - pharmacokinetics ; Cardiology ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; Choline - analogs & derivatives ; Choline - chemistry ; Choline - metabolism ; Choline - pharmacokinetics ; Fluorine Radioisotopes ; Gallium Radioisotopes ; Humans ; Imaging ; Male ; Medicine ; Medicine & Public Health ; Metabolic disorders ; Mice ; Nuclear Medicine ; Oligopeptides - chemistry ; Oligopeptides - metabolism ; Oligopeptides - pharmacokinetics ; Oncology ; Original ; Original Article ; Orthopedics ; Peptides ; Positron-Emission Tomography - methods ; Prostate cancer ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; Radiology ; Receptors, Bombesin - metabolism ; Tomography ; Xenotransplantation</subject><ispartof>European journal of nuclear medicine and molecular imaging, 2011-07, Vol.38 (7), p.1257-1266</ispartof><rights>The Author(s) 2011</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-a86a5e5d4c6c5c12335a341a31202edb02acf383e2caa546270560b7310413693</citedby><cites>FETCH-LOGICAL-c500t-a86a5e5d4c6c5c12335a341a31202edb02acf383e2caa546270560b7310413693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00259-011-1775-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00259-011-1775-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21431398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroeder, Rogier P. J.</creatorcontrib><creatorcontrib>van Weerden, W. M.</creatorcontrib><creatorcontrib>Krenning, E. P.</creatorcontrib><creatorcontrib>Bangma, C. H.</creatorcontrib><creatorcontrib>Berndsen, S.</creatorcontrib><creatorcontrib>Grievink-de Ligt, C. H.</creatorcontrib><creatorcontrib>Groen, H. C.</creatorcontrib><creatorcontrib>Reneman, S.</creatorcontrib><creatorcontrib>de Blois, E.</creatorcontrib><creatorcontrib>Breeman, W. A. P.</creatorcontrib><creatorcontrib>de Jong, M.</creatorcontrib><title>Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts</title><title>European journal of nuclear medicine and molecular imaging</title><addtitle>Eur J Nucl Med Mol Imaging</addtitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><description>Purpose
Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activity, metabolism-based tracers are also being used for PC imaging. We compared GRPR-based targeting using the
68
Ga-labelled bombesin analogue AMBA with metabolism-based targeting using
18
F-methylcholine (
18
F-FCH) in nude mice bearing human prostate VCaP xenografts.
Methods
PET and biodistribution studies were performed with both
68
Ga-AMBA and
18
F-FCH in all VCaP tumour-bearing mice, with PC-3 tumour-bearing mice as reference. Scanning started immediately after injection. Dynamic PET scans were reconstructed and analysed quantitatively. Biodistribution of tracers and tissue uptake was expressed as percent of injected dose per gram tissue (%ID/g).
Results
All tumours were clearly visualized using
68
Ga-AMBA.
18
F-FCH showed significantly less contrast due to poor tumour-to-background ratios. Quantitative PET analyses showed fast tumour uptake and high retention for both tracers. VCaP tumour uptake values determined from PET at steady-state were 6.7 ± 1.4%ID/g (20–30 min after injection,
N
= 8) for
68
Ga-AMBA and 1.6 ± 0.5%ID/g (10–20 min after injection,
N
= 8) for
18
F-FCH, which were significantly different (
p
<0.001). The results in PC-3 tumour-bearing mice were comparable. Biodistribution data were in accordance with the PET results showing VCaP tumour uptake values of 9.5 ± 4.8%ID/g (
N
= 8) for
68
Ga-AMBA and 2.1 ± 0.4%ID/g (
N
= 8) for
18
F-FCH. Apart from the GRPR-expressing organs, uptake in all organs was lower for
68
Ga-AMBA than for
18
F-FCH.
Conclusion
Tumour uptake of
68
Ga-AMBA was higher while overall background activity was lower than observed for
18
F-FCH in the same PC-bearing mice. These results suggest that peptide receptor-based targeting using the bombesin analogue AMBA is superior to metabolism-based targeting using choline for scintigraphy of PC.</description><subject>Animals</subject><subject>Bombesin - analogs & derivatives</subject><subject>Bombesin - metabolism</subject><subject>Bombesin - pharmacokinetics</subject><subject>Cardiology</subject><subject>Cell Line, Tumor</subject><subject>Cell Transformation, Neoplastic</subject><subject>Choline - analogs & derivatives</subject><subject>Choline - chemistry</subject><subject>Choline - metabolism</subject><subject>Choline - pharmacokinetics</subject><subject>Fluorine Radioisotopes</subject><subject>Gallium Radioisotopes</subject><subject>Humans</subject><subject>Imaging</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolic disorders</subject><subject>Mice</subject><subject>Nuclear Medicine</subject><subject>Oligopeptides - chemistry</subject><subject>Oligopeptides - metabolism</subject><subject>Oligopeptides - pharmacokinetics</subject><subject>Oncology</subject><subject>Original</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Peptides</subject><subject>Positron-Emission Tomography - methods</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Radiology</subject><subject>Receptors, Bombesin - metabolism</subject><subject>Tomography</subject><subject>Xenotransplantation</subject><issn>1619-7070</issn><issn>1619-7089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1ks1u1TAQhSMEoqXwAGyQxYZVYGzH-dkgoQoKUiU2sLYmvpNcV4kdbOeqPBsvh8Mtlx-pK490vjkej09RPOfwmgM0byKAUF0JnJe8aVQpHxTnvOZd2UDbPTzVDZwVT2K8AeCtaLvHxZngleSya8-LH1cYU7CuDDQRRutGttCS7I5YIJMrH8oeI-1YwjBS2oD1F9b7uadcMXQ4-XGlyGxkcV0oWB9Y8mymhL2fbJzvsTD7rDpiQ-az0cEePLMzjpvmB7ZfZ3RsCT4mTMQMOkOB3ZLzY8AhxafFowGnSM_uzovi64f3Xy4_ltefrz5dvrsujQJIJbY1KlK7ytRGGS6kVCgrjpILELTrQaAZZCtJGERV1aIBVUPfSA4Vl3UnL4q3R99l7WfaGXIp4KSXkGcN37VHq_9VnN3r0R_05gBQZYNXdwbBf8uLSnq20dA0oSO_Rt02tRC1ankmX_5H3vg15AVnqO7yT7YgM8SPkMmriYGG0ygc9BYMfQyGzsHQWzD01vPi7zecOn4nIQPiCMQsuZHCn5vvd_0JnBHJBw</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Schroeder, Rogier P. J.</creator><creator>van Weerden, W. M.</creator><creator>Krenning, E. P.</creator><creator>Bangma, C. H.</creator><creator>Berndsen, S.</creator><creator>Grievink-de Ligt, C. H.</creator><creator>Groen, H. C.</creator><creator>Reneman, S.</creator><creator>de Blois, E.</creator><creator>Breeman, W. A. P.</creator><creator>de Jong, M.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20110701</creationdate><title>Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts</title><author>Schroeder, Rogier P. J. ; van Weerden, W. M. ; Krenning, E. P. ; Bangma, C. H. ; Berndsen, S. ; Grievink-de Ligt, C. H. ; Groen, H. C. ; Reneman, S. ; de Blois, E. ; Breeman, W. A. P. ; de Jong, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-a86a5e5d4c6c5c12335a341a31202edb02acf383e2caa546270560b7310413693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Bombesin - analogs & derivatives</topic><topic>Bombesin - metabolism</topic><topic>Bombesin - pharmacokinetics</topic><topic>Cardiology</topic><topic>Cell Line, Tumor</topic><topic>Cell Transformation, Neoplastic</topic><topic>Choline - analogs & derivatives</topic><topic>Choline - chemistry</topic><topic>Choline - metabolism</topic><topic>Choline - pharmacokinetics</topic><topic>Fluorine Radioisotopes</topic><topic>Gallium Radioisotopes</topic><topic>Humans</topic><topic>Imaging</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolic disorders</topic><topic>Mice</topic><topic>Nuclear Medicine</topic><topic>Oligopeptides - chemistry</topic><topic>Oligopeptides - metabolism</topic><topic>Oligopeptides - pharmacokinetics</topic><topic>Oncology</topic><topic>Original</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Peptides</topic><topic>Positron-Emission Tomography - methods</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Radiology</topic><topic>Receptors, Bombesin - metabolism</topic><topic>Tomography</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Rogier P. J.</creatorcontrib><creatorcontrib>van Weerden, W. M.</creatorcontrib><creatorcontrib>Krenning, E. P.</creatorcontrib><creatorcontrib>Bangma, C. H.</creatorcontrib><creatorcontrib>Berndsen, S.</creatorcontrib><creatorcontrib>Grievink-de Ligt, C. H.</creatorcontrib><creatorcontrib>Groen, H. C.</creatorcontrib><creatorcontrib>Reneman, S.</creatorcontrib><creatorcontrib>de Blois, E.</creatorcontrib><creatorcontrib>Breeman, W. A. P.</creatorcontrib><creatorcontrib>de Jong, M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of nuclear medicine and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Rogier P. J.</au><au>van Weerden, W. M.</au><au>Krenning, E. P.</au><au>Bangma, C. H.</au><au>Berndsen, S.</au><au>Grievink-de Ligt, C. H.</au><au>Groen, H. C.</au><au>Reneman, S.</au><au>de Blois, E.</au><au>Breeman, W. A. P.</au><au>de Jong, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts</atitle><jtitle>European journal of nuclear medicine and molecular imaging</jtitle><stitle>Eur J Nucl Med Mol Imaging</stitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>38</volume><issue>7</issue><spage>1257</spage><epage>1266</epage><pages>1257-1266</pages><issn>1619-7070</issn><eissn>1619-7089</eissn><abstract>Purpose
Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activity, metabolism-based tracers are also being used for PC imaging. We compared GRPR-based targeting using the
68
Ga-labelled bombesin analogue AMBA with metabolism-based targeting using
18
F-methylcholine (
18
F-FCH) in nude mice bearing human prostate VCaP xenografts.
Methods
PET and biodistribution studies were performed with both
68
Ga-AMBA and
18
F-FCH in all VCaP tumour-bearing mice, with PC-3 tumour-bearing mice as reference. Scanning started immediately after injection. Dynamic PET scans were reconstructed and analysed quantitatively. Biodistribution of tracers and tissue uptake was expressed as percent of injected dose per gram tissue (%ID/g).
Results
All tumours were clearly visualized using
68
Ga-AMBA.
18
F-FCH showed significantly less contrast due to poor tumour-to-background ratios. Quantitative PET analyses showed fast tumour uptake and high retention for both tracers. VCaP tumour uptake values determined from PET at steady-state were 6.7 ± 1.4%ID/g (20–30 min after injection,
N
= 8) for
68
Ga-AMBA and 1.6 ± 0.5%ID/g (10–20 min after injection,
N
= 8) for
18
F-FCH, which were significantly different (
p
<0.001). The results in PC-3 tumour-bearing mice were comparable. Biodistribution data were in accordance with the PET results showing VCaP tumour uptake values of 9.5 ± 4.8%ID/g (
N
= 8) for
68
Ga-AMBA and 2.1 ± 0.4%ID/g (
N
= 8) for
18
F-FCH. Apart from the GRPR-expressing organs, uptake in all organs was lower for
68
Ga-AMBA than for
18
F-FCH.
Conclusion
Tumour uptake of
68
Ga-AMBA was higher while overall background activity was lower than observed for
18
F-FCH in the same PC-bearing mice. These results suggest that peptide receptor-based targeting using the bombesin analogue AMBA is superior to metabolism-based targeting using choline for scintigraphy of PC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21431398</pmid><doi>10.1007/s00259-011-1775-3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1619-7070 |
ispartof | European journal of nuclear medicine and molecular imaging, 2011-07, Vol.38 (7), p.1257-1266 |
issn | 1619-7070 1619-7089 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3104004 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Bombesin - analogs & derivatives Bombesin - metabolism Bombesin - pharmacokinetics Cardiology Cell Line, Tumor Cell Transformation, Neoplastic Choline - analogs & derivatives Choline - chemistry Choline - metabolism Choline - pharmacokinetics Fluorine Radioisotopes Gallium Radioisotopes Humans Imaging Male Medicine Medicine & Public Health Metabolic disorders Mice Nuclear Medicine Oligopeptides - chemistry Oligopeptides - metabolism Oligopeptides - pharmacokinetics Oncology Original Original Article Orthopedics Peptides Positron-Emission Tomography - methods Prostate cancer Prostatic Neoplasms - diagnostic imaging Prostatic Neoplasms - metabolism Prostatic Neoplasms - pathology Radiology Receptors, Bombesin - metabolism Tomography Xenotransplantation |
title | Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gastrin-releasing%20peptide%20receptor-based%20targeting%20using%20bombesin%20analogues%20is%20superior%20to%20metabolism-based%20targeting%20using%20choline%20for%20in%20vivo%20imaging%20of%20human%20prostate%20cancer%20xenografts&rft.jtitle=European%20journal%20of%20nuclear%20medicine%20and%20molecular%20imaging&rft.au=Schroeder,%20Rogier%20P.%20J.&rft.date=2011-07-01&rft.volume=38&rft.issue=7&rft.spage=1257&rft.epage=1266&rft.pages=1257-1266&rft.issn=1619-7070&rft.eissn=1619-7089&rft_id=info:doi/10.1007/s00259-011-1775-3&rft_dat=%3Cproquest_pubme%3E2361217451%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869070803&rft_id=info:pmid/21431398&rfr_iscdi=true |