Statistical analysis of latency outcomes in behavioral experiments

► Methods for analyzing latency outcomes are investigated. ► ANOVA methods may cause biased and misleading results if applied to latency data. ► A survival analysis is proposed to analyze such data. In experimental designs of animal models, memory is often assessed by the time for a performance meas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavioural brain research 2011-08, Vol.221 (1), p.271-275
Hauptverfasser: Jahn-Eimermacher, Antje, Lasarzik, Irina, Raber, Jacob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 1
container_start_page 271
container_title Behavioural brain research
container_volume 221
creator Jahn-Eimermacher, Antje
Lasarzik, Irina
Raber, Jacob
description ► Methods for analyzing latency outcomes are investigated. ► ANOVA methods may cause biased and misleading results if applied to latency data. ► A survival analysis is proposed to analyze such data. In experimental designs of animal models, memory is often assessed by the time for a performance measure to occur (latency). Depending on the cognitive test, this may be the time it takes an animal to escape to a hidden platform (water maze), an escape tunnel (Barnes maze) or to enter a dark component (passive avoidance test). Latency outcomes are usually statistically analyzed using ANOVAs. Besides strong distributional assumptions, ANOVA cannot properly deal with animals not showing the performance measure within the trial time, potentially causing biased and misleading results. We propose an alternative approach for statistical analyses of latency outcomes. These analyses have less distributional assumptions and adequately handle results of trials in which the performance measure did not occur within the trial time. The proposed method is well known from survival analyses, provides comprehensible statistical results and allows the generation of meaningful graphs. Experiments of behavioral neuroscience and anesthesiology are used to illustrate this method.
doi_str_mv 10.1016/j.bbr.2011.03.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3103828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166432811001847</els_id><sourcerecordid>876224424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-e3d17dc9ca0fab23cb952b10a31ba2416993abfc7c619b1254c5e539b40ff00f3</originalsourceid><addsrcrecordid>eNqFkc2O0zAUhS0EYsrAA7BB2SBWCdc_iWMhIQ0j_qSRWABry3auGVdpXGy3om-Pq5YBNrDywt89PtcfIU8pdBTo8HLdWZs6BpR2wDsAeY-s6ChZK3uh7pNVZYZWcDZekEc5rwFAQE8fkgtGuZID71fkzediSsglODM3ZjHzIYfcRN_MpuDiDk3cFRc3mJuwNBZvzT7EVFH8scUUNriU_Jg88GbO-OR8XpKv795-uf7Q3nx6__H66qZ1vRxLi3yicnLKGfDGMu6s6pmlYDi1hgk6KMWN9U66gSpLWS9cjz1XVoD3AJ5fkten3O3ObnBy9e3aRG9rDZMOOpqg_75Zwq3-FveaU-AjG2vAi3NAit93mIvehOxwns2CcZf1KAfGhGDi_-TApGJCyUrSE-lSzDmhv-tDQR8l6bWukvRRkgauq6Q68-zPRe4mflmpwPMzYHL14pNZXMi_OUG5HPlxoVcnDuu37wMmnV2o1nAKCV3RUwz_qPETlYSwvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862792497</pqid></control><display><type>article</type><title>Statistical analysis of latency outcomes in behavioral experiments</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Jahn-Eimermacher, Antje ; Lasarzik, Irina ; Raber, Jacob</creator><creatorcontrib>Jahn-Eimermacher, Antje ; Lasarzik, Irina ; Raber, Jacob</creatorcontrib><description>► Methods for analyzing latency outcomes are investigated. ► ANOVA methods may cause biased and misleading results if applied to latency data. ► A survival analysis is proposed to analyze such data. In experimental designs of animal models, memory is often assessed by the time for a performance measure to occur (latency). Depending on the cognitive test, this may be the time it takes an animal to escape to a hidden platform (water maze), an escape tunnel (Barnes maze) or to enter a dark component (passive avoidance test). Latency outcomes are usually statistically analyzed using ANOVAs. Besides strong distributional assumptions, ANOVA cannot properly deal with animals not showing the performance measure within the trial time, potentially causing biased and misleading results. We propose an alternative approach for statistical analyses of latency outcomes. These analyses have less distributional assumptions and adequately handle results of trials in which the performance measure did not occur within the trial time. The proposed method is well known from survival analyses, provides comprehensible statistical results and allows the generation of meaningful graphs. Experiments of behavioral neuroscience and anesthesiology are used to illustrate this method.</description><identifier>ISSN: 0166-4328</identifier><identifier>EISSN: 1872-7549</identifier><identifier>DOI: 10.1016/j.bbr.2011.03.007</identifier><identifier>PMID: 21397635</identifier><identifier>CODEN: BBREDI</identifier><language>eng</language><publisher>Shannon: Elsevier B.V</publisher><subject>Animals ; Avoidance Learning ; Barnes maze ; Behavioral psychophysiology ; Biological and medical sciences ; Data Display - statistics &amp; numerical data ; Data Interpretation, Statistical ; Fundamental and applied biological sciences. Psychology ; Latency ; Maze Learning ; Models, Animal ; Morris water maze ; Passive avoidance ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Reaction Time ; Retention (Psychology) ; Sample Size ; Spatial Behavior ; Statistical analysis</subject><ispartof>Behavioural brain research, 2011-08, Vol.221 (1), p.271-275</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><rights>2011 Elsevier B.V. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-e3d17dc9ca0fab23cb952b10a31ba2416993abfc7c619b1254c5e539b40ff00f3</citedby><cites>FETCH-LOGICAL-c578t-e3d17dc9ca0fab23cb952b10a31ba2416993abfc7c619b1254c5e539b40ff00f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbr.2011.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24137838$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21397635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jahn-Eimermacher, Antje</creatorcontrib><creatorcontrib>Lasarzik, Irina</creatorcontrib><creatorcontrib>Raber, Jacob</creatorcontrib><title>Statistical analysis of latency outcomes in behavioral experiments</title><title>Behavioural brain research</title><addtitle>Behav Brain Res</addtitle><description>► Methods for analyzing latency outcomes are investigated. ► ANOVA methods may cause biased and misleading results if applied to latency data. ► A survival analysis is proposed to analyze such data. In experimental designs of animal models, memory is often assessed by the time for a performance measure to occur (latency). Depending on the cognitive test, this may be the time it takes an animal to escape to a hidden platform (water maze), an escape tunnel (Barnes maze) or to enter a dark component (passive avoidance test). Latency outcomes are usually statistically analyzed using ANOVAs. Besides strong distributional assumptions, ANOVA cannot properly deal with animals not showing the performance measure within the trial time, potentially causing biased and misleading results. We propose an alternative approach for statistical analyses of latency outcomes. These analyses have less distributional assumptions and adequately handle results of trials in which the performance measure did not occur within the trial time. The proposed method is well known from survival analyses, provides comprehensible statistical results and allows the generation of meaningful graphs. Experiments of behavioral neuroscience and anesthesiology are used to illustrate this method.</description><subject>Animals</subject><subject>Avoidance Learning</subject><subject>Barnes maze</subject><subject>Behavioral psychophysiology</subject><subject>Biological and medical sciences</subject><subject>Data Display - statistics &amp; numerical data</subject><subject>Data Interpretation, Statistical</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Latency</subject><subject>Maze Learning</subject><subject>Models, Animal</subject><subject>Morris water maze</subject><subject>Passive avoidance</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Reaction Time</subject><subject>Retention (Psychology)</subject><subject>Sample Size</subject><subject>Spatial Behavior</subject><subject>Statistical analysis</subject><issn>0166-4328</issn><issn>1872-7549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2O0zAUhS0EYsrAA7BB2SBWCdc_iWMhIQ0j_qSRWABry3auGVdpXGy3om-Pq5YBNrDywt89PtcfIU8pdBTo8HLdWZs6BpR2wDsAeY-s6ChZK3uh7pNVZYZWcDZekEc5rwFAQE8fkgtGuZID71fkzediSsglODM3ZjHzIYfcRN_MpuDiDk3cFRc3mJuwNBZvzT7EVFH8scUUNriU_Jg88GbO-OR8XpKv795-uf7Q3nx6__H66qZ1vRxLi3yicnLKGfDGMu6s6pmlYDi1hgk6KMWN9U66gSpLWS9cjz1XVoD3AJ5fkten3O3ObnBy9e3aRG9rDZMOOpqg_75Zwq3-FveaU-AjG2vAi3NAit93mIvehOxwns2CcZf1KAfGhGDi_-TApGJCyUrSE-lSzDmhv-tDQR8l6bWukvRRkgauq6Q68-zPRe4mflmpwPMzYHL14pNZXMi_OUG5HPlxoVcnDuu37wMmnV2o1nAKCV3RUwz_qPETlYSwvA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Jahn-Eimermacher, Antje</creator><creator>Lasarzik, Irina</creator><creator>Raber, Jacob</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QG</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20110801</creationdate><title>Statistical analysis of latency outcomes in behavioral experiments</title><author>Jahn-Eimermacher, Antje ; Lasarzik, Irina ; Raber, Jacob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-e3d17dc9ca0fab23cb952b10a31ba2416993abfc7c619b1254c5e539b40ff00f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Avoidance Learning</topic><topic>Barnes maze</topic><topic>Behavioral psychophysiology</topic><topic>Biological and medical sciences</topic><topic>Data Display - statistics &amp; numerical data</topic><topic>Data Interpretation, Statistical</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Latency</topic><topic>Maze Learning</topic><topic>Models, Animal</topic><topic>Morris water maze</topic><topic>Passive avoidance</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Reaction Time</topic><topic>Retention (Psychology)</topic><topic>Sample Size</topic><topic>Spatial Behavior</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahn-Eimermacher, Antje</creatorcontrib><creatorcontrib>Lasarzik, Irina</creatorcontrib><creatorcontrib>Raber, Jacob</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Behavioural brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahn-Eimermacher, Antje</au><au>Lasarzik, Irina</au><au>Raber, Jacob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical analysis of latency outcomes in behavioral experiments</atitle><jtitle>Behavioural brain research</jtitle><addtitle>Behav Brain Res</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>221</volume><issue>1</issue><spage>271</spage><epage>275</epage><pages>271-275</pages><issn>0166-4328</issn><eissn>1872-7549</eissn><coden>BBREDI</coden><abstract>► Methods for analyzing latency outcomes are investigated. ► ANOVA methods may cause biased and misleading results if applied to latency data. ► A survival analysis is proposed to analyze such data. In experimental designs of animal models, memory is often assessed by the time for a performance measure to occur (latency). Depending on the cognitive test, this may be the time it takes an animal to escape to a hidden platform (water maze), an escape tunnel (Barnes maze) or to enter a dark component (passive avoidance test). Latency outcomes are usually statistically analyzed using ANOVAs. Besides strong distributional assumptions, ANOVA cannot properly deal with animals not showing the performance measure within the trial time, potentially causing biased and misleading results. We propose an alternative approach for statistical analyses of latency outcomes. These analyses have less distributional assumptions and adequately handle results of trials in which the performance measure did not occur within the trial time. The proposed method is well known from survival analyses, provides comprehensible statistical results and allows the generation of meaningful graphs. Experiments of behavioral neuroscience and anesthesiology are used to illustrate this method.</abstract><cop>Shannon</cop><pub>Elsevier B.V</pub><pmid>21397635</pmid><doi>10.1016/j.bbr.2011.03.007</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-4328
ispartof Behavioural brain research, 2011-08, Vol.221 (1), p.271-275
issn 0166-4328
1872-7549
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3103828
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Avoidance Learning
Barnes maze
Behavioral psychophysiology
Biological and medical sciences
Data Display - statistics & numerical data
Data Interpretation, Statistical
Fundamental and applied biological sciences. Psychology
Latency
Maze Learning
Models, Animal
Morris water maze
Passive avoidance
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Reaction Time
Retention (Psychology)
Sample Size
Spatial Behavior
Statistical analysis
title Statistical analysis of latency outcomes in behavioral experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20analysis%20of%20latency%20outcomes%20in%20behavioral%20experiments&rft.jtitle=Behavioural%20brain%20research&rft.au=Jahn-Eimermacher,%20Antje&rft.date=2011-08-01&rft.volume=221&rft.issue=1&rft.spage=271&rft.epage=275&rft.pages=271-275&rft.issn=0166-4328&rft.eissn=1872-7549&rft.coden=BBREDI&rft_id=info:doi/10.1016/j.bbr.2011.03.007&rft_dat=%3Cproquest_pubme%3E876224424%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862792497&rft_id=info:pmid/21397635&rft_els_id=S0166432811001847&rfr_iscdi=true