Automated layer segmentation of macular OCT images using dual-scale gradient information

A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2010-09, Vol.18 (20), p.21293-21307
Hauptverfasser: Yang, Qi, Reisman, Charles A, Wang, Zhenguo, Fukuma, Yasufumi, Hangai, Masanori, Yoshimura, Nagahisa, Tomidokoro, Atsuo, Araie, Makoto, Raza, Ali S, Hood, Donald C, Chan, Kinpui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21307
container_issue 20
container_start_page 21293
container_title Optics express
container_volume 18
creator Yang, Qi
Reisman, Charles A
Wang, Zhenguo
Fukuma, Yasufumi
Hangai, Masanori
Yoshimura, Nagahisa
Tomidokoro, Atsuo
Araie, Makoto
Raza, Ali S
Hood, Donald C
Chan, Kinpui
description A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and complementary global gradient information simultaneously. A shortest path search is applied to optimize the edge selection. The segmentation algorithm was validated with independent manual segmentation and a reproducibility study. It demonstrates high accuracy and reproducibility in segmenting normal 3D OCT volumes. The execution time is about 16 seconds per volume (480x512x128 voxels). The algorithm shows potential for quantifying images from diseased retinas as well.
doi_str_mv 10.1364/oe.18.021293
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3101081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>758132696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-f3ef37a8b4869253f5890ac18601b1b1f859a65bdc8ef0ace4515a71611af03e3</originalsourceid><addsrcrecordid>eNpVkctLxDAQxoMouj5uniU3L3bNNH2kF2FZ1gcIe1nBW5htJ7XSNmvSCv73RldlZQ4Z-H7zzUeGsXMQU5BZcm1pCmoqYogLuccmIIokSoTK93f6I3bs_asQkORFfsiO4iCAiNMJe56Ng-1woIq3-EGOe6o76gccGttza3iH5dii48v5ijcd1uT56Ju-5tWIbeRLbInXDqsmDPGmN9Z137On7MBg6-ns5z1hT7eL1fw-elzePcxnj1GZFPEQGUlG5qjWicqKOJUmVYXAElQmYB3KqLTALF1XpSITBEpSSDGHDACNkCRP2M3WdzOuO6rKEMNhqzcuhHUf2mKj_yt986Jr-64lCBAKgsHlj4GzbyP5QXeNL6ltsSc7ep2nAYqzIgvk1ZYsnfXekfnbAkJ_3UIvFxqU3t4i4Be7yf7g38-Xn3yWhlc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758132696</pqid></control><display><type>article</type><title>Automated layer segmentation of macular OCT images using dual-scale gradient information</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Qi ; Reisman, Charles A ; Wang, Zhenguo ; Fukuma, Yasufumi ; Hangai, Masanori ; Yoshimura, Nagahisa ; Tomidokoro, Atsuo ; Araie, Makoto ; Raza, Ali S ; Hood, Donald C ; Chan, Kinpui</creator><creatorcontrib>Yang, Qi ; Reisman, Charles A ; Wang, Zhenguo ; Fukuma, Yasufumi ; Hangai, Masanori ; Yoshimura, Nagahisa ; Tomidokoro, Atsuo ; Araie, Makoto ; Raza, Ali S ; Hood, Donald C ; Chan, Kinpui</creatorcontrib><description>A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and complementary global gradient information simultaneously. A shortest path search is applied to optimize the edge selection. The segmentation algorithm was validated with independent manual segmentation and a reproducibility study. It demonstrates high accuracy and reproducibility in segmenting normal 3D OCT volumes. The execution time is about 16 seconds per volume (480x512x128 voxels). The algorithm shows potential for quantifying images from diseased retinas as well.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/oe.18.021293</identifier><identifier>PMID: 20941025</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Automatic Data Processing - methods ; Automation ; Diagnostic Techniques, Ophthalmological ; Equipment Design ; Glaucoma - diagnosis ; Humans ; Image Processing, Computer-Assisted - methods ; Macula Lutea - pathology ; Macular Degeneration - diagnosis ; Reproducibility of Results ; Tomography, Optical Coherence - methods</subject><ispartof>Optics express, 2010-09, Vol.18 (20), p.21293-21307</ispartof><rights>2010 Optical Society of America 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-f3ef37a8b4869253f5890ac18601b1b1f859a65bdc8ef0ace4515a71611af03e3</citedby><cites>FETCH-LOGICAL-c492t-f3ef37a8b4869253f5890ac18601b1b1f859a65bdc8ef0ace4515a71611af03e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20941025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Reisman, Charles A</creatorcontrib><creatorcontrib>Wang, Zhenguo</creatorcontrib><creatorcontrib>Fukuma, Yasufumi</creatorcontrib><creatorcontrib>Hangai, Masanori</creatorcontrib><creatorcontrib>Yoshimura, Nagahisa</creatorcontrib><creatorcontrib>Tomidokoro, Atsuo</creatorcontrib><creatorcontrib>Araie, Makoto</creatorcontrib><creatorcontrib>Raza, Ali S</creatorcontrib><creatorcontrib>Hood, Donald C</creatorcontrib><creatorcontrib>Chan, Kinpui</creatorcontrib><title>Automated layer segmentation of macular OCT images using dual-scale gradient information</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and complementary global gradient information simultaneously. A shortest path search is applied to optimize the edge selection. The segmentation algorithm was validated with independent manual segmentation and a reproducibility study. It demonstrates high accuracy and reproducibility in segmenting normal 3D OCT volumes. The execution time is about 16 seconds per volume (480x512x128 voxels). The algorithm shows potential for quantifying images from diseased retinas as well.</description><subject>Algorithms</subject><subject>Automatic Data Processing - methods</subject><subject>Automation</subject><subject>Diagnostic Techniques, Ophthalmological</subject><subject>Equipment Design</subject><subject>Glaucoma - diagnosis</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Macula Lutea - pathology</subject><subject>Macular Degeneration - diagnosis</subject><subject>Reproducibility of Results</subject><subject>Tomography, Optical Coherence - methods</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctLxDAQxoMouj5uniU3L3bNNH2kF2FZ1gcIe1nBW5htJ7XSNmvSCv73RldlZQ4Z-H7zzUeGsXMQU5BZcm1pCmoqYogLuccmIIokSoTK93f6I3bs_asQkORFfsiO4iCAiNMJe56Ng-1woIq3-EGOe6o76gccGttza3iH5dii48v5ijcd1uT56Ju-5tWIbeRLbInXDqsmDPGmN9Z137On7MBg6-ns5z1hT7eL1fw-elzePcxnj1GZFPEQGUlG5qjWicqKOJUmVYXAElQmYB3KqLTALF1XpSITBEpSSDGHDACNkCRP2M3WdzOuO6rKEMNhqzcuhHUf2mKj_yt986Jr-64lCBAKgsHlj4GzbyP5QXeNL6ltsSc7ep2nAYqzIgvk1ZYsnfXekfnbAkJ_3UIvFxqU3t4i4Be7yf7g38-Xn3yWhlc</recordid><startdate>20100927</startdate><enddate>20100927</enddate><creator>Yang, Qi</creator><creator>Reisman, Charles A</creator><creator>Wang, Zhenguo</creator><creator>Fukuma, Yasufumi</creator><creator>Hangai, Masanori</creator><creator>Yoshimura, Nagahisa</creator><creator>Tomidokoro, Atsuo</creator><creator>Araie, Makoto</creator><creator>Raza, Ali S</creator><creator>Hood, Donald C</creator><creator>Chan, Kinpui</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100927</creationdate><title>Automated layer segmentation of macular OCT images using dual-scale gradient information</title><author>Yang, Qi ; Reisman, Charles A ; Wang, Zhenguo ; Fukuma, Yasufumi ; Hangai, Masanori ; Yoshimura, Nagahisa ; Tomidokoro, Atsuo ; Araie, Makoto ; Raza, Ali S ; Hood, Donald C ; Chan, Kinpui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-f3ef37a8b4869253f5890ac18601b1b1f859a65bdc8ef0ace4515a71611af03e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Automatic Data Processing - methods</topic><topic>Automation</topic><topic>Diagnostic Techniques, Ophthalmological</topic><topic>Equipment Design</topic><topic>Glaucoma - diagnosis</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Macula Lutea - pathology</topic><topic>Macular Degeneration - diagnosis</topic><topic>Reproducibility of Results</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Reisman, Charles A</creatorcontrib><creatorcontrib>Wang, Zhenguo</creatorcontrib><creatorcontrib>Fukuma, Yasufumi</creatorcontrib><creatorcontrib>Hangai, Masanori</creatorcontrib><creatorcontrib>Yoshimura, Nagahisa</creatorcontrib><creatorcontrib>Tomidokoro, Atsuo</creatorcontrib><creatorcontrib>Araie, Makoto</creatorcontrib><creatorcontrib>Raza, Ali S</creatorcontrib><creatorcontrib>Hood, Donald C</creatorcontrib><creatorcontrib>Chan, Kinpui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qi</au><au>Reisman, Charles A</au><au>Wang, Zhenguo</au><au>Fukuma, Yasufumi</au><au>Hangai, Masanori</au><au>Yoshimura, Nagahisa</au><au>Tomidokoro, Atsuo</au><au>Araie, Makoto</au><au>Raza, Ali S</au><au>Hood, Donald C</au><au>Chan, Kinpui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated layer segmentation of macular OCT images using dual-scale gradient information</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2010-09-27</date><risdate>2010</risdate><volume>18</volume><issue>20</issue><spage>21293</spage><epage>21307</epage><pages>21293-21307</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and complementary global gradient information simultaneously. A shortest path search is applied to optimize the edge selection. The segmentation algorithm was validated with independent manual segmentation and a reproducibility study. It demonstrates high accuracy and reproducibility in segmenting normal 3D OCT volumes. The execution time is about 16 seconds per volume (480x512x128 voxels). The algorithm shows potential for quantifying images from diseased retinas as well.</abstract><cop>United States</cop><pmid>20941025</pmid><doi>10.1364/oe.18.021293</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2010-09, Vol.18 (20), p.21293-21307
issn 1094-4087
1094-4087
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3101081
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Automatic Data Processing - methods
Automation
Diagnostic Techniques, Ophthalmological
Equipment Design
Glaucoma - diagnosis
Humans
Image Processing, Computer-Assisted - methods
Macula Lutea - pathology
Macular Degeneration - diagnosis
Reproducibility of Results
Tomography, Optical Coherence - methods
title Automated layer segmentation of macular OCT images using dual-scale gradient information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20layer%20segmentation%20of%20macular%20OCT%20images%20using%20dual-scale%20gradient%20information&rft.jtitle=Optics%20express&rft.au=Yang,%20Qi&rft.date=2010-09-27&rft.volume=18&rft.issue=20&rft.spage=21293&rft.epage=21307&rft.pages=21293-21307&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/oe.18.021293&rft_dat=%3Cproquest_pubme%3E758132696%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=758132696&rft_id=info:pmid/20941025&rfr_iscdi=true