Automated layer segmentation of macular OCT images using dual-scale gradient information
A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and com...
Gespeichert in:
Veröffentlicht in: | Optics express 2010-09, Vol.18 (20), p.21293-21307 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21307 |
---|---|
container_issue | 20 |
container_start_page | 21293 |
container_title | Optics express |
container_volume | 18 |
creator | Yang, Qi Reisman, Charles A Wang, Zhenguo Fukuma, Yasufumi Hangai, Masanori Yoshimura, Nagahisa Tomidokoro, Atsuo Araie, Makoto Raza, Ali S Hood, Donald C Chan, Kinpui |
description | A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and complementary global gradient information simultaneously. A shortest path search is applied to optimize the edge selection. The segmentation algorithm was validated with independent manual segmentation and a reproducibility study. It demonstrates high accuracy and reproducibility in segmenting normal 3D OCT volumes. The execution time is about 16 seconds per volume (480x512x128 voxels). The algorithm shows potential for quantifying images from diseased retinas as well. |
doi_str_mv | 10.1364/oe.18.021293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3101081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>758132696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-f3ef37a8b4869253f5890ac18601b1b1f859a65bdc8ef0ace4515a71611af03e3</originalsourceid><addsrcrecordid>eNpVkctLxDAQxoMouj5uniU3L3bNNH2kF2FZ1gcIe1nBW5htJ7XSNmvSCv73RldlZQ4Z-H7zzUeGsXMQU5BZcm1pCmoqYogLuccmIIokSoTK93f6I3bs_asQkORFfsiO4iCAiNMJe56Ng-1woIq3-EGOe6o76gccGttza3iH5dii48v5ijcd1uT56Ju-5tWIbeRLbInXDqsmDPGmN9Z137On7MBg6-ns5z1hT7eL1fw-elzePcxnj1GZFPEQGUlG5qjWicqKOJUmVYXAElQmYB3KqLTALF1XpSITBEpSSDGHDACNkCRP2M3WdzOuO6rKEMNhqzcuhHUf2mKj_yt986Jr-64lCBAKgsHlj4GzbyP5QXeNL6ltsSc7ep2nAYqzIgvk1ZYsnfXekfnbAkJ_3UIvFxqU3t4i4Be7yf7g38-Xn3yWhlc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758132696</pqid></control><display><type>article</type><title>Automated layer segmentation of macular OCT images using dual-scale gradient information</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Qi ; Reisman, Charles A ; Wang, Zhenguo ; Fukuma, Yasufumi ; Hangai, Masanori ; Yoshimura, Nagahisa ; Tomidokoro, Atsuo ; Araie, Makoto ; Raza, Ali S ; Hood, Donald C ; Chan, Kinpui</creator><creatorcontrib>Yang, Qi ; Reisman, Charles A ; Wang, Zhenguo ; Fukuma, Yasufumi ; Hangai, Masanori ; Yoshimura, Nagahisa ; Tomidokoro, Atsuo ; Araie, Makoto ; Raza, Ali S ; Hood, Donald C ; Chan, Kinpui</creatorcontrib><description>A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and complementary global gradient information simultaneously. A shortest path search is applied to optimize the edge selection. The segmentation algorithm was validated with independent manual segmentation and a reproducibility study. It demonstrates high accuracy and reproducibility in segmenting normal 3D OCT volumes. The execution time is about 16 seconds per volume (480x512x128 voxels). The algorithm shows potential for quantifying images from diseased retinas as well.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/oe.18.021293</identifier><identifier>PMID: 20941025</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Automatic Data Processing - methods ; Automation ; Diagnostic Techniques, Ophthalmological ; Equipment Design ; Glaucoma - diagnosis ; Humans ; Image Processing, Computer-Assisted - methods ; Macula Lutea - pathology ; Macular Degeneration - diagnosis ; Reproducibility of Results ; Tomography, Optical Coherence - methods</subject><ispartof>Optics express, 2010-09, Vol.18 (20), p.21293-21307</ispartof><rights>2010 Optical Society of America 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-f3ef37a8b4869253f5890ac18601b1b1f859a65bdc8ef0ace4515a71611af03e3</citedby><cites>FETCH-LOGICAL-c492t-f3ef37a8b4869253f5890ac18601b1b1f859a65bdc8ef0ace4515a71611af03e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20941025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Reisman, Charles A</creatorcontrib><creatorcontrib>Wang, Zhenguo</creatorcontrib><creatorcontrib>Fukuma, Yasufumi</creatorcontrib><creatorcontrib>Hangai, Masanori</creatorcontrib><creatorcontrib>Yoshimura, Nagahisa</creatorcontrib><creatorcontrib>Tomidokoro, Atsuo</creatorcontrib><creatorcontrib>Araie, Makoto</creatorcontrib><creatorcontrib>Raza, Ali S</creatorcontrib><creatorcontrib>Hood, Donald C</creatorcontrib><creatorcontrib>Chan, Kinpui</creatorcontrib><title>Automated layer segmentation of macular OCT images using dual-scale gradient information</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and complementary global gradient information simultaneously. A shortest path search is applied to optimize the edge selection. The segmentation algorithm was validated with independent manual segmentation and a reproducibility study. It demonstrates high accuracy and reproducibility in segmenting normal 3D OCT volumes. The execution time is about 16 seconds per volume (480x512x128 voxels). The algorithm shows potential for quantifying images from diseased retinas as well.</description><subject>Algorithms</subject><subject>Automatic Data Processing - methods</subject><subject>Automation</subject><subject>Diagnostic Techniques, Ophthalmological</subject><subject>Equipment Design</subject><subject>Glaucoma - diagnosis</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Macula Lutea - pathology</subject><subject>Macular Degeneration - diagnosis</subject><subject>Reproducibility of Results</subject><subject>Tomography, Optical Coherence - methods</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctLxDAQxoMouj5uniU3L3bNNH2kF2FZ1gcIe1nBW5htJ7XSNmvSCv73RldlZQ4Z-H7zzUeGsXMQU5BZcm1pCmoqYogLuccmIIokSoTK93f6I3bs_asQkORFfsiO4iCAiNMJe56Ng-1woIq3-EGOe6o76gccGttza3iH5dii48v5ijcd1uT56Ju-5tWIbeRLbInXDqsmDPGmN9Z137On7MBg6-ns5z1hT7eL1fw-elzePcxnj1GZFPEQGUlG5qjWicqKOJUmVYXAElQmYB3KqLTALF1XpSITBEpSSDGHDACNkCRP2M3WdzOuO6rKEMNhqzcuhHUf2mKj_yt986Jr-64lCBAKgsHlj4GzbyP5QXeNL6ltsSc7ep2nAYqzIgvk1ZYsnfXekfnbAkJ_3UIvFxqU3t4i4Be7yf7g38-Xn3yWhlc</recordid><startdate>20100927</startdate><enddate>20100927</enddate><creator>Yang, Qi</creator><creator>Reisman, Charles A</creator><creator>Wang, Zhenguo</creator><creator>Fukuma, Yasufumi</creator><creator>Hangai, Masanori</creator><creator>Yoshimura, Nagahisa</creator><creator>Tomidokoro, Atsuo</creator><creator>Araie, Makoto</creator><creator>Raza, Ali S</creator><creator>Hood, Donald C</creator><creator>Chan, Kinpui</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100927</creationdate><title>Automated layer segmentation of macular OCT images using dual-scale gradient information</title><author>Yang, Qi ; Reisman, Charles A ; Wang, Zhenguo ; Fukuma, Yasufumi ; Hangai, Masanori ; Yoshimura, Nagahisa ; Tomidokoro, Atsuo ; Araie, Makoto ; Raza, Ali S ; Hood, Donald C ; Chan, Kinpui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-f3ef37a8b4869253f5890ac18601b1b1f859a65bdc8ef0ace4515a71611af03e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Automatic Data Processing - methods</topic><topic>Automation</topic><topic>Diagnostic Techniques, Ophthalmological</topic><topic>Equipment Design</topic><topic>Glaucoma - diagnosis</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Macula Lutea - pathology</topic><topic>Macular Degeneration - diagnosis</topic><topic>Reproducibility of Results</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Reisman, Charles A</creatorcontrib><creatorcontrib>Wang, Zhenguo</creatorcontrib><creatorcontrib>Fukuma, Yasufumi</creatorcontrib><creatorcontrib>Hangai, Masanori</creatorcontrib><creatorcontrib>Yoshimura, Nagahisa</creatorcontrib><creatorcontrib>Tomidokoro, Atsuo</creatorcontrib><creatorcontrib>Araie, Makoto</creatorcontrib><creatorcontrib>Raza, Ali S</creatorcontrib><creatorcontrib>Hood, Donald C</creatorcontrib><creatorcontrib>Chan, Kinpui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qi</au><au>Reisman, Charles A</au><au>Wang, Zhenguo</au><au>Fukuma, Yasufumi</au><au>Hangai, Masanori</au><au>Yoshimura, Nagahisa</au><au>Tomidokoro, Atsuo</au><au>Araie, Makoto</au><au>Raza, Ali S</au><au>Hood, Donald C</au><au>Chan, Kinpui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated layer segmentation of macular OCT images using dual-scale gradient information</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2010-09-27</date><risdate>2010</risdate><volume>18</volume><issue>20</issue><spage>21293</spage><epage>21307</epage><pages>21293-21307</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and complementary global gradient information simultaneously. A shortest path search is applied to optimize the edge selection. The segmentation algorithm was validated with independent manual segmentation and a reproducibility study. It demonstrates high accuracy and reproducibility in segmenting normal 3D OCT volumes. The execution time is about 16 seconds per volume (480x512x128 voxels). The algorithm shows potential for quantifying images from diseased retinas as well.</abstract><cop>United States</cop><pmid>20941025</pmid><doi>10.1364/oe.18.021293</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2010-09, Vol.18 (20), p.21293-21307 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3101081 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Automatic Data Processing - methods Automation Diagnostic Techniques, Ophthalmological Equipment Design Glaucoma - diagnosis Humans Image Processing, Computer-Assisted - methods Macula Lutea - pathology Macular Degeneration - diagnosis Reproducibility of Results Tomography, Optical Coherence - methods |
title | Automated layer segmentation of macular OCT images using dual-scale gradient information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20layer%20segmentation%20of%20macular%20OCT%20images%20using%20dual-scale%20gradient%20information&rft.jtitle=Optics%20express&rft.au=Yang,%20Qi&rft.date=2010-09-27&rft.volume=18&rft.issue=20&rft.spage=21293&rft.epage=21307&rft.pages=21293-21307&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/oe.18.021293&rft_dat=%3Cproquest_pubme%3E758132696%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=758132696&rft_id=info:pmid/20941025&rfr_iscdi=true |