Region-specific transcriptional response to chronic nicotine in rat brain

Even though nicotine has been shown to modulate mRNA expression of a variety of genes, a comprehensive high-throughput study of the effects of nicotine on the tissue-specific gene expression profiles has been lacking in the literature. In this study, cDNA microarrays containing 1117 genes and ESTs w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2001-08, Vol.909 (1), p.194-203
Hauptverfasser: Konu, Özlen, Kane, Justin K, Barrett, Tanya, Vawter, Marquis P, Chang, Ruying, Ma, Jennie Z, Donovan, David M, Sharp, Burt, Becker, Kevin G, Li, Ming D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 1
container_start_page 194
container_title Brain research
container_volume 909
creator Konu, Özlen
Kane, Justin K
Barrett, Tanya
Vawter, Marquis P
Chang, Ruying
Ma, Jennie Z
Donovan, David M
Sharp, Burt
Becker, Kevin G
Li, Ming D
description Even though nicotine has been shown to modulate mRNA expression of a variety of genes, a comprehensive high-throughput study of the effects of nicotine on the tissue-specific gene expression profiles has been lacking in the literature. In this study, cDNA microarrays containing 1117 genes and ESTs were used to assess the transcriptional response to chronic nicotine treatment in rat, based on four brain regions, i.e. prefrontal cortex (PFC), nucleus accumbens (NAs), ventral tegmental area (VTA), and amygdala (AMYG). On the basis of a non-parametric resampling method, an index (called jackknifed reliability index, JRI) was proposed, and employed to determine the inherent measurement error across multiple arrays used in this study. Upon removal of the outliers, the mean correlation coefficient between duplicate measurements increased to 0.978±0.0035 from 0.941±0.045. Results from principal component analysis and pairwise correlations suggested that brain regions studied were highly similar in terms of their absolute expression levels, but exhibited divergent transcriptional responses to chronic nicotine administration. For example, PFC and NAs were significantly more similar to each other ( r=0.7; P
doi_str_mv 10.1016/S0006-8993(01)02685-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3098570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006899301026853</els_id><sourcerecordid>18081347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-6bd89bd47ea8b3bee4ff9016bfb7ba545f782e3b7f43c7bda07637a1406b807b3</originalsourceid><addsrcrecordid>eNqFkUFvFSEUhUmjaV-rP6HNbDS6GL0MDDAbjWmqNmnSpOqaAHNpaebBFOY18d9L-15aXbkgBPjuuZdzCDmm8IECFR9_AIBo1TCwd0DfQydU37I9sqJKdq3oOLwgqyfkgByWcluPjA2wTw4o5VINTKzI-RVehxTbMqMLPrhmySYWl8O81GszNRnLnGLBZkmNu8kpVqautISITYhNNktjswnxFXnpzVTw9W4_Ir--nv08_d5eXH47P_1y0ToB_dIKO6rBjlyiUZZZRO79UD9kvZXW9Lz3UnXIrPScOWlHA1IwaSgHYRVIy47Ip63uvLFrHB3GOvKk5xzWJv_WyQT970sMN_o63WsGg-olVIG3O4Gc7jZYFr0OxeE0mYhpUzRVoCjjsoL9FnQ5lZLRPzWhoB9C0I8h6AeHNVD9GIJmte7k7wmfq3auV-DNDjDFmclXy10ozxyHgVHoKvd5y2H18z5g1sUFjA7HkNEtekzhP6P8AdUopho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18081347</pqid></control><display><type>article</type><title>Region-specific transcriptional response to chronic nicotine in rat brain</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Konu, Özlen ; Kane, Justin K ; Barrett, Tanya ; Vawter, Marquis P ; Chang, Ruying ; Ma, Jennie Z ; Donovan, David M ; Sharp, Burt ; Becker, Kevin G ; Li, Ming D</creator><creatorcontrib>Konu, Özlen ; Kane, Justin K ; Barrett, Tanya ; Vawter, Marquis P ; Chang, Ruying ; Ma, Jennie Z ; Donovan, David M ; Sharp, Burt ; Becker, Kevin G ; Li, Ming D</creatorcontrib><description>Even though nicotine has been shown to modulate mRNA expression of a variety of genes, a comprehensive high-throughput study of the effects of nicotine on the tissue-specific gene expression profiles has been lacking in the literature. In this study, cDNA microarrays containing 1117 genes and ESTs were used to assess the transcriptional response to chronic nicotine treatment in rat, based on four brain regions, i.e. prefrontal cortex (PFC), nucleus accumbens (NAs), ventral tegmental area (VTA), and amygdala (AMYG). On the basis of a non-parametric resampling method, an index (called jackknifed reliability index, JRI) was proposed, and employed to determine the inherent measurement error across multiple arrays used in this study. Upon removal of the outliers, the mean correlation coefficient between duplicate measurements increased to 0.978±0.0035 from 0.941±0.045. Results from principal component analysis and pairwise correlations suggested that brain regions studied were highly similar in terms of their absolute expression levels, but exhibited divergent transcriptional responses to chronic nicotine administration. For example, PFC and NAs were significantly more similar to each other ( r=0.7; P&lt;10 −14) than to either VTA or AMYG. Furthermore, we confirmed our microarray results for two representative genes, i.e. the weak inward rectifier K + channel (TWIK-1), and phosphate and tensin homolog (PTEN) by using real-time quantitative RT-PCR technique. Finally, a number of genes, involved in MAPK, phosphatidylinositol, and EGFR signaling pathways, were identified and proposed as possible targets in response to nicotine administration.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/S0006-8993(01)02685-3</identifier><identifier>PMID: 11478936</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Amygdala - drug effects ; Amygdala - metabolism ; Animals ; Biological and medical sciences ; Brain ; Brain - drug effects ; Brain - metabolism ; Drug Administration Schedule ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - physiology ; Genes - drug effects ; Genes - physiology ; Male ; Medical sciences ; Microarray ; mRNA expression ; Nicotine ; Nicotine - pharmacology ; Nicotinic Agonists - pharmacology ; Normalization ; Nucleus Accumbens - drug effects ; Nucleus Accumbens - metabolism ; Oligonucleotide Array Sequence Analysis ; Pathway ; Phosphoric Monoester Hydrolases - drug effects ; Phosphoric Monoester Hydrolases - metabolism ; Potassium Channels - drug effects ; Potassium Channels - metabolism ; Potassium Channels, Tandem Pore Domain ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - metabolism ; PTEN Phosphohydrolase ; Rats ; Rats, Sprague-Dawley ; Reproducibility of Results ; RNA, Messenger - drug effects ; RNA, Messenger - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Tobacco Use Disorder - genetics ; Tobacco Use Disorder - metabolism ; Tobacco Use Disorder - physiopathology ; Tobacco, tobacco smoking ; Toxicology ; Transcription, Genetic - drug effects ; Transcription, Genetic - physiology ; Tumor Suppressor Proteins ; ventral tegmental area ; Ventral Tegmental Area - drug effects ; Ventral Tegmental Area - metabolism</subject><ispartof>Brain research, 2001-08, Vol.909 (1), p.194-203</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-6bd89bd47ea8b3bee4ff9016bfb7ba545f782e3b7f43c7bda07637a1406b807b3</citedby><cites>FETCH-LOGICAL-c605t-6bd89bd47ea8b3bee4ff9016bfb7ba545f782e3b7f43c7bda07637a1406b807b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-8993(01)02685-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14093102$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11478936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Konu, Özlen</creatorcontrib><creatorcontrib>Kane, Justin K</creatorcontrib><creatorcontrib>Barrett, Tanya</creatorcontrib><creatorcontrib>Vawter, Marquis P</creatorcontrib><creatorcontrib>Chang, Ruying</creatorcontrib><creatorcontrib>Ma, Jennie Z</creatorcontrib><creatorcontrib>Donovan, David M</creatorcontrib><creatorcontrib>Sharp, Burt</creatorcontrib><creatorcontrib>Becker, Kevin G</creatorcontrib><creatorcontrib>Li, Ming D</creatorcontrib><title>Region-specific transcriptional response to chronic nicotine in rat brain</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Even though nicotine has been shown to modulate mRNA expression of a variety of genes, a comprehensive high-throughput study of the effects of nicotine on the tissue-specific gene expression profiles has been lacking in the literature. In this study, cDNA microarrays containing 1117 genes and ESTs were used to assess the transcriptional response to chronic nicotine treatment in rat, based on four brain regions, i.e. prefrontal cortex (PFC), nucleus accumbens (NAs), ventral tegmental area (VTA), and amygdala (AMYG). On the basis of a non-parametric resampling method, an index (called jackknifed reliability index, JRI) was proposed, and employed to determine the inherent measurement error across multiple arrays used in this study. Upon removal of the outliers, the mean correlation coefficient between duplicate measurements increased to 0.978±0.0035 from 0.941±0.045. Results from principal component analysis and pairwise correlations suggested that brain regions studied were highly similar in terms of their absolute expression levels, but exhibited divergent transcriptional responses to chronic nicotine administration. For example, PFC and NAs were significantly more similar to each other ( r=0.7; P&lt;10 −14) than to either VTA or AMYG. Furthermore, we confirmed our microarray results for two representative genes, i.e. the weak inward rectifier K + channel (TWIK-1), and phosphate and tensin homolog (PTEN) by using real-time quantitative RT-PCR technique. Finally, a number of genes, involved in MAPK, phosphatidylinositol, and EGFR signaling pathways, were identified and proposed as possible targets in response to nicotine administration.</description><subject>Amygdala - drug effects</subject><subject>Amygdala - metabolism</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Drug Administration Schedule</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - physiology</subject><subject>Genes - drug effects</subject><subject>Genes - physiology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Microarray</subject><subject>mRNA expression</subject><subject>Nicotine</subject><subject>Nicotine - pharmacology</subject><subject>Nicotinic Agonists - pharmacology</subject><subject>Normalization</subject><subject>Nucleus Accumbens - drug effects</subject><subject>Nucleus Accumbens - metabolism</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pathway</subject><subject>Phosphoric Monoester Hydrolases - drug effects</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium Channels, Tandem Pore Domain</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - metabolism</subject><subject>PTEN Phosphohydrolase</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reproducibility of Results</subject><subject>RNA, Messenger - drug effects</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Tobacco Use Disorder - genetics</subject><subject>Tobacco Use Disorder - metabolism</subject><subject>Tobacco Use Disorder - physiopathology</subject><subject>Tobacco, tobacco smoking</subject><subject>Toxicology</subject><subject>Transcription, Genetic - drug effects</subject><subject>Transcription, Genetic - physiology</subject><subject>Tumor Suppressor Proteins</subject><subject>ventral tegmental area</subject><subject>Ventral Tegmental Area - drug effects</subject><subject>Ventral Tegmental Area - metabolism</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvFSEUhUmjaV-rP6HNbDS6GL0MDDAbjWmqNmnSpOqaAHNpaebBFOY18d9L-15aXbkgBPjuuZdzCDmm8IECFR9_AIBo1TCwd0DfQydU37I9sqJKdq3oOLwgqyfkgByWcluPjA2wTw4o5VINTKzI-RVehxTbMqMLPrhmySYWl8O81GszNRnLnGLBZkmNu8kpVqautISITYhNNktjswnxFXnpzVTw9W4_Ir--nv08_d5eXH47P_1y0ToB_dIKO6rBjlyiUZZZRO79UD9kvZXW9Lz3UnXIrPScOWlHA1IwaSgHYRVIy47Ip63uvLFrHB3GOvKk5xzWJv_WyQT970sMN_o63WsGg-olVIG3O4Gc7jZYFr0OxeE0mYhpUzRVoCjjsoL9FnQ5lZLRPzWhoB9C0I8h6AeHNVD9GIJmte7k7wmfq3auV-DNDjDFmclXy10ozxyHgVHoKvd5y2H18z5g1sUFjA7HkNEtekzhP6P8AdUopho</recordid><startdate>20010803</startdate><enddate>20010803</enddate><creator>Konu, Özlen</creator><creator>Kane, Justin K</creator><creator>Barrett, Tanya</creator><creator>Vawter, Marquis P</creator><creator>Chang, Ruying</creator><creator>Ma, Jennie Z</creator><creator>Donovan, David M</creator><creator>Sharp, Burt</creator><creator>Becker, Kevin G</creator><creator>Li, Ming D</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20010803</creationdate><title>Region-specific transcriptional response to chronic nicotine in rat brain</title><author>Konu, Özlen ; Kane, Justin K ; Barrett, Tanya ; Vawter, Marquis P ; Chang, Ruying ; Ma, Jennie Z ; Donovan, David M ; Sharp, Burt ; Becker, Kevin G ; Li, Ming D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-6bd89bd47ea8b3bee4ff9016bfb7ba545f782e3b7f43c7bda07637a1406b807b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amygdala - drug effects</topic><topic>Amygdala - metabolism</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Drug Administration Schedule</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - physiology</topic><topic>Genes - drug effects</topic><topic>Genes - physiology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Microarray</topic><topic>mRNA expression</topic><topic>Nicotine</topic><topic>Nicotine - pharmacology</topic><topic>Nicotinic Agonists - pharmacology</topic><topic>Normalization</topic><topic>Nucleus Accumbens - drug effects</topic><topic>Nucleus Accumbens - metabolism</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pathway</topic><topic>Phosphoric Monoester Hydrolases - drug effects</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium Channels, Tandem Pore Domain</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - metabolism</topic><topic>PTEN Phosphohydrolase</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reproducibility of Results</topic><topic>RNA, Messenger - drug effects</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Tobacco Use Disorder - genetics</topic><topic>Tobacco Use Disorder - metabolism</topic><topic>Tobacco Use Disorder - physiopathology</topic><topic>Tobacco, tobacco smoking</topic><topic>Toxicology</topic><topic>Transcription, Genetic - drug effects</topic><topic>Transcription, Genetic - physiology</topic><topic>Tumor Suppressor Proteins</topic><topic>ventral tegmental area</topic><topic>Ventral Tegmental Area - drug effects</topic><topic>Ventral Tegmental Area - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konu, Özlen</creatorcontrib><creatorcontrib>Kane, Justin K</creatorcontrib><creatorcontrib>Barrett, Tanya</creatorcontrib><creatorcontrib>Vawter, Marquis P</creatorcontrib><creatorcontrib>Chang, Ruying</creatorcontrib><creatorcontrib>Ma, Jennie Z</creatorcontrib><creatorcontrib>Donovan, David M</creatorcontrib><creatorcontrib>Sharp, Burt</creatorcontrib><creatorcontrib>Becker, Kevin G</creatorcontrib><creatorcontrib>Li, Ming D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konu, Özlen</au><au>Kane, Justin K</au><au>Barrett, Tanya</au><au>Vawter, Marquis P</au><au>Chang, Ruying</au><au>Ma, Jennie Z</au><au>Donovan, David M</au><au>Sharp, Burt</au><au>Becker, Kevin G</au><au>Li, Ming D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Region-specific transcriptional response to chronic nicotine in rat brain</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2001-08-03</date><risdate>2001</risdate><volume>909</volume><issue>1</issue><spage>194</spage><epage>203</epage><pages>194-203</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Even though nicotine has been shown to modulate mRNA expression of a variety of genes, a comprehensive high-throughput study of the effects of nicotine on the tissue-specific gene expression profiles has been lacking in the literature. In this study, cDNA microarrays containing 1117 genes and ESTs were used to assess the transcriptional response to chronic nicotine treatment in rat, based on four brain regions, i.e. prefrontal cortex (PFC), nucleus accumbens (NAs), ventral tegmental area (VTA), and amygdala (AMYG). On the basis of a non-parametric resampling method, an index (called jackknifed reliability index, JRI) was proposed, and employed to determine the inherent measurement error across multiple arrays used in this study. Upon removal of the outliers, the mean correlation coefficient between duplicate measurements increased to 0.978±0.0035 from 0.941±0.045. Results from principal component analysis and pairwise correlations suggested that brain regions studied were highly similar in terms of their absolute expression levels, but exhibited divergent transcriptional responses to chronic nicotine administration. For example, PFC and NAs were significantly more similar to each other ( r=0.7; P&lt;10 −14) than to either VTA or AMYG. Furthermore, we confirmed our microarray results for two representative genes, i.e. the weak inward rectifier K + channel (TWIK-1), and phosphate and tensin homolog (PTEN) by using real-time quantitative RT-PCR technique. Finally, a number of genes, involved in MAPK, phosphatidylinositol, and EGFR signaling pathways, were identified and proposed as possible targets in response to nicotine administration.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>11478936</pmid><doi>10.1016/S0006-8993(01)02685-3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 2001-08, Vol.909 (1), p.194-203
issn 0006-8993
1872-6240
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3098570
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Amygdala - drug effects
Amygdala - metabolism
Animals
Biological and medical sciences
Brain
Brain - drug effects
Brain - metabolism
Drug Administration Schedule
Gene Expression Regulation - drug effects
Gene Expression Regulation - physiology
Genes - drug effects
Genes - physiology
Male
Medical sciences
Microarray
mRNA expression
Nicotine
Nicotine - pharmacology
Nicotinic Agonists - pharmacology
Normalization
Nucleus Accumbens - drug effects
Nucleus Accumbens - metabolism
Oligonucleotide Array Sequence Analysis
Pathway
Phosphoric Monoester Hydrolases - drug effects
Phosphoric Monoester Hydrolases - metabolism
Potassium Channels - drug effects
Potassium Channels - metabolism
Potassium Channels, Tandem Pore Domain
Prefrontal Cortex - drug effects
Prefrontal Cortex - metabolism
PTEN Phosphohydrolase
Rats
Rats, Sprague-Dawley
Reproducibility of Results
RNA, Messenger - drug effects
RNA, Messenger - metabolism
Signal Transduction - drug effects
Signal Transduction - physiology
Tobacco Use Disorder - genetics
Tobacco Use Disorder - metabolism
Tobacco Use Disorder - physiopathology
Tobacco, tobacco smoking
Toxicology
Transcription, Genetic - drug effects
Transcription, Genetic - physiology
Tumor Suppressor Proteins
ventral tegmental area
Ventral Tegmental Area - drug effects
Ventral Tegmental Area - metabolism
title Region-specific transcriptional response to chronic nicotine in rat brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Region-specific%20transcriptional%20response%20to%20chronic%20nicotine%20in%20rat%20brain&rft.jtitle=Brain%20research&rft.au=Konu,%20%C3%96zlen&rft.date=2001-08-03&rft.volume=909&rft.issue=1&rft.spage=194&rft.epage=203&rft.pages=194-203&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/S0006-8993(01)02685-3&rft_dat=%3Cproquest_pubme%3E18081347%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18081347&rft_id=info:pmid/11478936&rft_els_id=S0006899301026853&rfr_iscdi=true