Integrative epigenomic mapping defines four main chromatin states in Arabidopsis

Post‐translational modification of histones and DNA methylation are important components of chromatin‐level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2011-05, Vol.30 (10), p.1928-1938
Hauptverfasser: Roudier, François, Ahmed, Ikhlak, Bérard, Caroline, Sarazin, Alexis, Mary-Huard, Tristan, Cortijo, Sandra, Bouyer, Daniel, Caillieux, Erwann, Duvernois-Berthet, Evelyne, Al-Shikhley, Liza, Giraut, Laurène, Després, Barbara, Drevensek, Stéphanie, Barneche, Frédy, Dèrozier, Sandra, Brunaud, Véronique, Aubourg, Sébastien, Schnittger, Arp, Bowler, Chris, Martin-Magniette, Marie-Laure, Robin, Stéphane, Caboche, Michel, Colot, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1938
container_issue 10
container_start_page 1928
container_title The EMBO journal
container_volume 30
creator Roudier, François
Ahmed, Ikhlak
Bérard, Caroline
Sarazin, Alexis
Mary-Huard, Tristan
Cortijo, Sandra
Bouyer, Daniel
Caillieux, Erwann
Duvernois-Berthet, Evelyne
Al-Shikhley, Liza
Giraut, Laurène
Després, Barbara
Drevensek, Stéphanie
Barneche, Frédy
Dèrozier, Sandra
Brunaud, Véronique
Aubourg, Sébastien
Schnittger, Arp
Bowler, Chris
Martin-Magniette, Marie-Laure
Robin, Stéphane
Caboche, Michel
Colot, Vincent
description Post‐translational modification of histones and DNA methylation are important components of chromatin‐level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin‐based regulatory mechanisms in plants. This first comprehensive view of the Arabidopsis epigenome reveals that it is organized into four main chromatin types based on the integrative mapping of a broad set of 11 histone marks and DNA methylation in seedlings.
doi_str_mv 10.1038/emboj.2011.103
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3098477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>902345029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6353-1ea7c420128c56f7ce159084b01976f3b60df7d0aea02b5b5623129fba15e6333</originalsourceid><addsrcrecordid>eNqFkstv1DAQhyMEokvhyhFFXBCHtGM7fl2QtlXTFi2PA4ij5SRO1svGSe3sQv97HFIWqJA42TPz_eZhT5I8R3CCgIhT05X95gQDQpP9IFmgnEGGgdOHyQIwQ1mOhDxKnoSwAQAqOHqcHGGUC06EWCQfr91oWq9HuzepGWxrXN_ZKu30MFjXprVprDMhbfqdj07r0mrt-y7yLg2jHmMo3pZel7buh2DD0-RRo7fBPLs7j5PPxcWn86ts9eHy-ny5yipGKMmQ0bzKY99YVJQ1vDKIShB5CUhy1pCSQd3wGrTRgEtaUoYJwrIpNaKGEUKOkzdz3mFXdqaujBu93qrB2077W9Vrq_6OOLtWbb9XBKTIOY8JXs8J1vdkV8uVmnwAUkaU7VFkX90V8_3NzoRRdTZUZrvVzvS7oCRgklPA8r-kYAIIxP-J5Mt75Ca-sYtvFiFO47A5ROjFn1Me-vz1gRHgM_DNbs3tIY5ATeuhfq6HmtZjstXFu7O3kxHvUXk6K0MUudb43_X_rY6KbFbYMJrvh1raf1WME07Vl_eXqqBnrChIoST5AZj5zCM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867512940</pqid></control><display><type>article</type><title>Integrative epigenomic mapping defines four main chromatin states in Arabidopsis</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Roudier, François ; Ahmed, Ikhlak ; Bérard, Caroline ; Sarazin, Alexis ; Mary-Huard, Tristan ; Cortijo, Sandra ; Bouyer, Daniel ; Caillieux, Erwann ; Duvernois-Berthet, Evelyne ; Al-Shikhley, Liza ; Giraut, Laurène ; Després, Barbara ; Drevensek, Stéphanie ; Barneche, Frédy ; Dèrozier, Sandra ; Brunaud, Véronique ; Aubourg, Sébastien ; Schnittger, Arp ; Bowler, Chris ; Martin-Magniette, Marie-Laure ; Robin, Stéphane ; Caboche, Michel ; Colot, Vincent</creator><creatorcontrib>Roudier, François ; Ahmed, Ikhlak ; Bérard, Caroline ; Sarazin, Alexis ; Mary-Huard, Tristan ; Cortijo, Sandra ; Bouyer, Daniel ; Caillieux, Erwann ; Duvernois-Berthet, Evelyne ; Al-Shikhley, Liza ; Giraut, Laurène ; Després, Barbara ; Drevensek, Stéphanie ; Barneche, Frédy ; Dèrozier, Sandra ; Brunaud, Véronique ; Aubourg, Sébastien ; Schnittger, Arp ; Bowler, Chris ; Martin-Magniette, Marie-Laure ; Robin, Stéphane ; Caboche, Michel ; Colot, Vincent</creatorcontrib><description>Post‐translational modification of histones and DNA methylation are important components of chromatin‐level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin‐based regulatory mechanisms in plants. This first comprehensive view of the Arabidopsis epigenome reveals that it is organized into four main chromatin types based on the integrative mapping of a broad set of 11 histone marks and DNA methylation in seedlings.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/emboj.2011.103</identifier><identifier>PMID: 21487388</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis Proteins - metabolism ; Biochemistry, Molecular Biology ; Cellular Biology ; Chromatin ; Chromatin - metabolism ; Chromosomes - metabolism ; Deoxyribonucleic acid ; Development Biology ; DNA ; DNA Methylation ; EMBO09 ; EMBO30 ; Epigenesis, Genetic ; epigenome ; Eukaryotes ; Gene Expression Regulation, Plant ; Genetics ; Genomics ; histone modifications ; Histones - metabolism ; Life Sciences ; Metazoa ; Molecular biology ; Plant biology ; Plants genetics ; Protein Processing, Post-Translational ; Reproductive Biology ; Sexual reproduction ; Vegetal Biology</subject><ispartof>The EMBO journal, 2011-05, Vol.30 (10), p.1928-1938</ispartof><rights>European Molecular Biology Organization 2011</rights><rights>Copyright © 2011 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group May 18, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2011, European Molecular Biology Organization 2011 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6353-1ea7c420128c56f7ce159084b01976f3b60df7d0aea02b5b5623129fba15e6333</citedby><orcidid>0000-0003-3291-6729 ; 0000-0003-1442-6603 ; 0000-0002-7014-7097 ; 0000-0003-1045-069X ; 0000-0002-0695-4767 ; 0000-0002-3839-9067 ; 0000-0002-6246-3161 ; 0000-0002-1757-6386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098477/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098477/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21487388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00999846$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roudier, François</creatorcontrib><creatorcontrib>Ahmed, Ikhlak</creatorcontrib><creatorcontrib>Bérard, Caroline</creatorcontrib><creatorcontrib>Sarazin, Alexis</creatorcontrib><creatorcontrib>Mary-Huard, Tristan</creatorcontrib><creatorcontrib>Cortijo, Sandra</creatorcontrib><creatorcontrib>Bouyer, Daniel</creatorcontrib><creatorcontrib>Caillieux, Erwann</creatorcontrib><creatorcontrib>Duvernois-Berthet, Evelyne</creatorcontrib><creatorcontrib>Al-Shikhley, Liza</creatorcontrib><creatorcontrib>Giraut, Laurène</creatorcontrib><creatorcontrib>Després, Barbara</creatorcontrib><creatorcontrib>Drevensek, Stéphanie</creatorcontrib><creatorcontrib>Barneche, Frédy</creatorcontrib><creatorcontrib>Dèrozier, Sandra</creatorcontrib><creatorcontrib>Brunaud, Véronique</creatorcontrib><creatorcontrib>Aubourg, Sébastien</creatorcontrib><creatorcontrib>Schnittger, Arp</creatorcontrib><creatorcontrib>Bowler, Chris</creatorcontrib><creatorcontrib>Martin-Magniette, Marie-Laure</creatorcontrib><creatorcontrib>Robin, Stéphane</creatorcontrib><creatorcontrib>Caboche, Michel</creatorcontrib><creatorcontrib>Colot, Vincent</creatorcontrib><title>Integrative epigenomic mapping defines four main chromatin states in Arabidopsis</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Post‐translational modification of histones and DNA methylation are important components of chromatin‐level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin‐based regulatory mechanisms in plants. This first comprehensive view of the Arabidopsis epigenome reveals that it is organized into four main chromatin types based on the integrative mapping of a broad set of 11 histone marks and DNA methylation in seedlings.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cellular Biology</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Chromosomes - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Development Biology</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>EMBO09</subject><subject>EMBO30</subject><subject>Epigenesis, Genetic</subject><subject>epigenome</subject><subject>Eukaryotes</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetics</subject><subject>Genomics</subject><subject>histone modifications</subject><subject>Histones - metabolism</subject><subject>Life Sciences</subject><subject>Metazoa</subject><subject>Molecular biology</subject><subject>Plant biology</subject><subject>Plants genetics</subject><subject>Protein Processing, Post-Translational</subject><subject>Reproductive Biology</subject><subject>Sexual reproduction</subject><subject>Vegetal Biology</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkstv1DAQhyMEokvhyhFFXBCHtGM7fl2QtlXTFi2PA4ij5SRO1svGSe3sQv97HFIWqJA42TPz_eZhT5I8R3CCgIhT05X95gQDQpP9IFmgnEGGgdOHyQIwQ1mOhDxKnoSwAQAqOHqcHGGUC06EWCQfr91oWq9HuzepGWxrXN_ZKu30MFjXprVprDMhbfqdj07r0mrt-y7yLg2jHmMo3pZel7buh2DD0-RRo7fBPLs7j5PPxcWn86ts9eHy-ny5yipGKMmQ0bzKY99YVJQ1vDKIShB5CUhy1pCSQd3wGrTRgEtaUoYJwrIpNaKGEUKOkzdz3mFXdqaujBu93qrB2077W9Vrq_6OOLtWbb9XBKTIOY8JXs8J1vdkV8uVmnwAUkaU7VFkX90V8_3NzoRRdTZUZrvVzvS7oCRgklPA8r-kYAIIxP-J5Mt75Ca-sYtvFiFO47A5ROjFn1Me-vz1gRHgM_DNbs3tIY5ATeuhfq6HmtZjstXFu7O3kxHvUXk6K0MUudb43_X_rY6KbFbYMJrvh1raf1WME07Vl_eXqqBnrChIoST5AZj5zCM</recordid><startdate>20110518</startdate><enddate>20110518</enddate><creator>Roudier, François</creator><creator>Ahmed, Ikhlak</creator><creator>Bérard, Caroline</creator><creator>Sarazin, Alexis</creator><creator>Mary-Huard, Tristan</creator><creator>Cortijo, Sandra</creator><creator>Bouyer, Daniel</creator><creator>Caillieux, Erwann</creator><creator>Duvernois-Berthet, Evelyne</creator><creator>Al-Shikhley, Liza</creator><creator>Giraut, Laurène</creator><creator>Després, Barbara</creator><creator>Drevensek, Stéphanie</creator><creator>Barneche, Frédy</creator><creator>Dèrozier, Sandra</creator><creator>Brunaud, Véronique</creator><creator>Aubourg, Sébastien</creator><creator>Schnittger, Arp</creator><creator>Bowler, Chris</creator><creator>Martin-Magniette, Marie-Laure</creator><creator>Robin, Stéphane</creator><creator>Caboche, Michel</creator><creator>Colot, Vincent</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>EMBO Press</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3291-6729</orcidid><orcidid>https://orcid.org/0000-0003-1442-6603</orcidid><orcidid>https://orcid.org/0000-0002-7014-7097</orcidid><orcidid>https://orcid.org/0000-0003-1045-069X</orcidid><orcidid>https://orcid.org/0000-0002-0695-4767</orcidid><orcidid>https://orcid.org/0000-0002-3839-9067</orcidid><orcidid>https://orcid.org/0000-0002-6246-3161</orcidid><orcidid>https://orcid.org/0000-0002-1757-6386</orcidid></search><sort><creationdate>20110518</creationdate><title>Integrative epigenomic mapping defines four main chromatin states in Arabidopsis</title><author>Roudier, François ; Ahmed, Ikhlak ; Bérard, Caroline ; Sarazin, Alexis ; Mary-Huard, Tristan ; Cortijo, Sandra ; Bouyer, Daniel ; Caillieux, Erwann ; Duvernois-Berthet, Evelyne ; Al-Shikhley, Liza ; Giraut, Laurène ; Després, Barbara ; Drevensek, Stéphanie ; Barneche, Frédy ; Dèrozier, Sandra ; Brunaud, Véronique ; Aubourg, Sébastien ; Schnittger, Arp ; Bowler, Chris ; Martin-Magniette, Marie-Laure ; Robin, Stéphane ; Caboche, Michel ; Colot, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6353-1ea7c420128c56f7ce159084b01976f3b60df7d0aea02b5b5623129fba15e6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cellular Biology</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Chromosomes - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Development Biology</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>EMBO09</topic><topic>EMBO30</topic><topic>Epigenesis, Genetic</topic><topic>epigenome</topic><topic>Eukaryotes</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetics</topic><topic>Genomics</topic><topic>histone modifications</topic><topic>Histones - metabolism</topic><topic>Life Sciences</topic><topic>Metazoa</topic><topic>Molecular biology</topic><topic>Plant biology</topic><topic>Plants genetics</topic><topic>Protein Processing, Post-Translational</topic><topic>Reproductive Biology</topic><topic>Sexual reproduction</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roudier, François</creatorcontrib><creatorcontrib>Ahmed, Ikhlak</creatorcontrib><creatorcontrib>Bérard, Caroline</creatorcontrib><creatorcontrib>Sarazin, Alexis</creatorcontrib><creatorcontrib>Mary-Huard, Tristan</creatorcontrib><creatorcontrib>Cortijo, Sandra</creatorcontrib><creatorcontrib>Bouyer, Daniel</creatorcontrib><creatorcontrib>Caillieux, Erwann</creatorcontrib><creatorcontrib>Duvernois-Berthet, Evelyne</creatorcontrib><creatorcontrib>Al-Shikhley, Liza</creatorcontrib><creatorcontrib>Giraut, Laurène</creatorcontrib><creatorcontrib>Després, Barbara</creatorcontrib><creatorcontrib>Drevensek, Stéphanie</creatorcontrib><creatorcontrib>Barneche, Frédy</creatorcontrib><creatorcontrib>Dèrozier, Sandra</creatorcontrib><creatorcontrib>Brunaud, Véronique</creatorcontrib><creatorcontrib>Aubourg, Sébastien</creatorcontrib><creatorcontrib>Schnittger, Arp</creatorcontrib><creatorcontrib>Bowler, Chris</creatorcontrib><creatorcontrib>Martin-Magniette, Marie-Laure</creatorcontrib><creatorcontrib>Robin, Stéphane</creatorcontrib><creatorcontrib>Caboche, Michel</creatorcontrib><creatorcontrib>Colot, Vincent</creatorcontrib><collection>Istex</collection><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roudier, François</au><au>Ahmed, Ikhlak</au><au>Bérard, Caroline</au><au>Sarazin, Alexis</au><au>Mary-Huard, Tristan</au><au>Cortijo, Sandra</au><au>Bouyer, Daniel</au><au>Caillieux, Erwann</au><au>Duvernois-Berthet, Evelyne</au><au>Al-Shikhley, Liza</au><au>Giraut, Laurène</au><au>Després, Barbara</au><au>Drevensek, Stéphanie</au><au>Barneche, Frédy</au><au>Dèrozier, Sandra</au><au>Brunaud, Véronique</au><au>Aubourg, Sébastien</au><au>Schnittger, Arp</au><au>Bowler, Chris</au><au>Martin-Magniette, Marie-Laure</au><au>Robin, Stéphane</au><au>Caboche, Michel</au><au>Colot, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative epigenomic mapping defines four main chromatin states in Arabidopsis</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2011-05-18</date><risdate>2011</risdate><volume>30</volume><issue>10</issue><spage>1928</spage><epage>1938</epage><pages>1928-1938</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Post‐translational modification of histones and DNA methylation are important components of chromatin‐level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin‐based regulatory mechanisms in plants. This first comprehensive view of the Arabidopsis epigenome reveals that it is organized into four main chromatin types based on the integrative mapping of a broad set of 11 histone marks and DNA methylation in seedlings.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>21487388</pmid><doi>10.1038/emboj.2011.103</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3291-6729</orcidid><orcidid>https://orcid.org/0000-0003-1442-6603</orcidid><orcidid>https://orcid.org/0000-0002-7014-7097</orcidid><orcidid>https://orcid.org/0000-0003-1045-069X</orcidid><orcidid>https://orcid.org/0000-0002-0695-4767</orcidid><orcidid>https://orcid.org/0000-0002-3839-9067</orcidid><orcidid>https://orcid.org/0000-0002-6246-3161</orcidid><orcidid>https://orcid.org/0000-0002-1757-6386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2011-05, Vol.30 (10), p.1928-1938
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3098477
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects Arabidopsis
Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - metabolism
Biochemistry, Molecular Biology
Cellular Biology
Chromatin
Chromatin - metabolism
Chromosomes - metabolism
Deoxyribonucleic acid
Development Biology
DNA
DNA Methylation
EMBO09
EMBO30
Epigenesis, Genetic
epigenome
Eukaryotes
Gene Expression Regulation, Plant
Genetics
Genomics
histone modifications
Histones - metabolism
Life Sciences
Metazoa
Molecular biology
Plant biology
Plants genetics
Protein Processing, Post-Translational
Reproductive Biology
Sexual reproduction
Vegetal Biology
title Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20epigenomic%20mapping%20defines%20four%20main%20chromatin%20states%20in%20Arabidopsis&rft.jtitle=The%20EMBO%20journal&rft.au=Roudier,%20Fran%C3%A7ois&rft.date=2011-05-18&rft.volume=30&rft.issue=10&rft.spage=1928&rft.epage=1938&rft.pages=1928-1938&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/emboj.2011.103&rft_dat=%3Cproquest_pubme%3E902345029%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867512940&rft_id=info:pmid/21487388&rfr_iscdi=true