Circadian disruption and SCN control of energy metabolism

In this review we first present the anatomical pathways used by the suprachiasmatic nuclei to enforce its rhythmicity onto the body, especially its energy homeostatic system. The experimental data show that by activating the orexin system at the start of the active phase, the biological clock not on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEBS letters 2011-05, Vol.585 (10), p.1412-1426
Hauptverfasser: Kalsbeek, Andries, Scheer, Frank A., Perreau-Lenz, Stephanie, La Fleur, Susanne E., Yi, Chun-Xia, Fliers, Eric, Buijs, Ruud M.
Format: Artikel
Sprache:eng
Schlagworte:
ANS
CRH
CRY
CSF
DMH
FFA
HPA
HSL
IML
L/D
LPL
NPY
Per
PVN
SCN
SHR
SON
TRH
VIP
VMH
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1426
container_issue 10
container_start_page 1412
container_title FEBS letters
container_volume 585
creator Kalsbeek, Andries
Scheer, Frank A.
Perreau-Lenz, Stephanie
La Fleur, Susanne E.
Yi, Chun-Xia
Fliers, Eric
Buijs, Ruud M.
description In this review we first present the anatomical pathways used by the suprachiasmatic nuclei to enforce its rhythmicity onto the body, especially its energy homeostatic system. The experimental data show that by activating the orexin system at the start of the active phase, the biological clock not only ensures that we wake up on time, but also that our glucose metabolism and cardiovascular system are prepared for increased activity. The drawback of such a highly integrated system, however, becomes visible when our daily lives are not fully synchronized with the environment. Thus, in addition to increased physical activity and decreased intake of high-energy food, also a well-lighted and fully resonating biological clock may help to withstand the increasing “diabetogenic” pressure of today’s 24/7 society.
doi_str_mv 10.1016/j.febslet.2011.03.021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3095769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014579311001748</els_id><sourcerecordid>867322349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6628-d1970a1c55d0ab79175803a9dcd48ce40bf9499262092260355ef3495c070ca43</originalsourceid><addsrcrecordid>eNqNks1u1DAURiMEotPCI4Cyg03Cvf6J7Q2ojFqKVMGisLYc2ykeZeLBzhTN2-PRTCvYUFa25eOjz_puVb1CaBGwe7dqB9_n0c8tAcQWaAsEn1QLlII2lHXyabUAQNZwoehJdZrzCspZonpenRBkyCiKRaWWIVnjgplqF3LabuYQp9pMrr5ZfqltnOYUxzoOtZ98ut3Vaz-bPo4hr19UzwYzZv_yuJ5V3y8vvi2vmuuvnz4vz68b23VENg6VAIOWcwemFwoFl0CNctYxaT2DflBMKdIRUIR0QDn3A2WKWxBgDaNn1fuDd7Pt195ZXyKZUW9SWJu009EE_ffNFH7o23inKSguOlUEb46CFH9ufZ71OmTrx9FMPm6zViiBEcL4o6TsBCWkhCvk23-SKCjlVILCgvIDalPMOfnhITqC3lepV_pYpd5XqYHqUmV59_rPfz-8uu-uAFcH4FcY_e7_rPry4iO52c_FfiwQy04wWVQfDipfirwLPulsg5-sdyF5O2sXwyNpfwNbRMYR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733538091</pqid></control><display><type>article</type><title>Circadian disruption and SCN control of energy metabolism</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kalsbeek, Andries ; Scheer, Frank A. ; Perreau-Lenz, Stephanie ; La Fleur, Susanne E. ; Yi, Chun-Xia ; Fliers, Eric ; Buijs, Ruud M.</creator><creatorcontrib>Kalsbeek, Andries ; Scheer, Frank A. ; Perreau-Lenz, Stephanie ; La Fleur, Susanne E. ; Yi, Chun-Xia ; Fliers, Eric ; Buijs, Ruud M.</creatorcontrib><description>In this review we first present the anatomical pathways used by the suprachiasmatic nuclei to enforce its rhythmicity onto the body, especially its energy homeostatic system. The experimental data show that by activating the orexin system at the start of the active phase, the biological clock not only ensures that we wake up on time, but also that our glucose metabolism and cardiovascular system are prepared for increased activity. The drawback of such a highly integrated system, however, becomes visible when our daily lives are not fully synchronized with the environment. Thus, in addition to increased physical activity and decreased intake of high-energy food, also a well-lighted and fully resonating biological clock may help to withstand the increasing “diabetogenic” pressure of today’s 24/7 society.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1016/j.febslet.2011.03.021</identifier><identifier>PMID: 21414317</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>ACTH ; ad libitum ; Adipose Tissue - metabolism ; adrenocorticotrophic hormone ; Animals ; ANS ; Autonomic nervous system ; Autonomic Nervous System - metabolism ; Autonomic Nervous System - physiology ; biological clocks ; Bmal ; brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT) like ; cardiovascular system ; cerebrospinal fluid ; circadian locomotor output cycles kaput ; Circadian Rhythm - physiology ; CLOCK ; corticotrophin-releasing hormone ; CRH ; CRY ; cryptochrome ; CSF ; DMH ; dorsomedial nucleus of the hypothalamus ; energy ; energy metabolism ; Energy Metabolism - physiology ; FFA ; forced desynchrony ; free fatty acid ; GABA ; Gamma amino butyric acid ; Glucose ; GnRH ; gonadotropin-releasing hormone ; high energy foods ; hormone sensitive lipase ; Hormones - metabolism ; HPA ; HSL ; Humans ; hypothalamo-pituitary-adrenal ; Hypothalamus ; IML ; intermediolateral column of the spinal cord ; L/D ; light/dark ; lipoprotein lipase ; Liver ; LPL ; medial preoptic area ; Melatonin ; messenger RNA ; MPOA ; mRNA ; neuropeptide FF ; neuropeptide Y ; NPFF ; NPY ; Orexin ; PACAP ; paraventricular nucleus of the hypothalamus ; pePVN ; Per ; period ; periventricular nucleus of the hypothalamus ; physical activity ; pituitary adenylcyclase activating peptide ; PVN ; rate of (glucose) appearance ; restricted feeding ; SCN ; SHR ; society ; SON ; spontaneously hypertensive rat ; subparaventricular nucleus of the hypothalamus ; subPVN ; suprachiasmatic nuclei ; Suprachiasmatic Nucleus - metabolism ; Suprachiasmatic Nucleus - physiology ; supraoptic nuclei ; thyrotropin-releasing hormone ; TRH ; tyrosine hydroxylase ; vasoactive intestinal peptide ; ventromedial nucleus of the hypothalamus ; VIP ; VMH</subject><ispartof>FEBS letters, 2011-05, Vol.585 (10), p.1412-1426</ispartof><rights>2011 Federation of European Biochemical Societies</rights><rights>FEBS Letters 585 (2011) 1873-3468 © 2015 Federation of European Biochemical Societies</rights><rights>Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.</rights><rights>2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6628-d1970a1c55d0ab79175803a9dcd48ce40bf9499262092260355ef3495c070ca43</citedby><cites>FETCH-LOGICAL-c6628-d1970a1c55d0ab79175803a9dcd48ce40bf9499262092260355ef3495c070ca43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1016%2Fj.febslet.2011.03.021$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014579311001748$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,3537,27901,27902,45550,45551,46384,46808,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21414317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalsbeek, Andries</creatorcontrib><creatorcontrib>Scheer, Frank A.</creatorcontrib><creatorcontrib>Perreau-Lenz, Stephanie</creatorcontrib><creatorcontrib>La Fleur, Susanne E.</creatorcontrib><creatorcontrib>Yi, Chun-Xia</creatorcontrib><creatorcontrib>Fliers, Eric</creatorcontrib><creatorcontrib>Buijs, Ruud M.</creatorcontrib><title>Circadian disruption and SCN control of energy metabolism</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>In this review we first present the anatomical pathways used by the suprachiasmatic nuclei to enforce its rhythmicity onto the body, especially its energy homeostatic system. The experimental data show that by activating the orexin system at the start of the active phase, the biological clock not only ensures that we wake up on time, but also that our glucose metabolism and cardiovascular system are prepared for increased activity. The drawback of such a highly integrated system, however, becomes visible when our daily lives are not fully synchronized with the environment. Thus, in addition to increased physical activity and decreased intake of high-energy food, also a well-lighted and fully resonating biological clock may help to withstand the increasing “diabetogenic” pressure of today’s 24/7 society.</description><subject>ACTH</subject><subject>ad libitum</subject><subject>Adipose Tissue - metabolism</subject><subject>adrenocorticotrophic hormone</subject><subject>Animals</subject><subject>ANS</subject><subject>Autonomic nervous system</subject><subject>Autonomic Nervous System - metabolism</subject><subject>Autonomic Nervous System - physiology</subject><subject>biological clocks</subject><subject>Bmal</subject><subject>brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT) like</subject><subject>cardiovascular system</subject><subject>cerebrospinal fluid</subject><subject>circadian locomotor output cycles kaput</subject><subject>Circadian Rhythm - physiology</subject><subject>CLOCK</subject><subject>corticotrophin-releasing hormone</subject><subject>CRH</subject><subject>CRY</subject><subject>cryptochrome</subject><subject>CSF</subject><subject>DMH</subject><subject>dorsomedial nucleus of the hypothalamus</subject><subject>energy</subject><subject>energy metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>FFA</subject><subject>forced desynchrony</subject><subject>free fatty acid</subject><subject>GABA</subject><subject>Gamma amino butyric acid</subject><subject>Glucose</subject><subject>GnRH</subject><subject>gonadotropin-releasing hormone</subject><subject>high energy foods</subject><subject>hormone sensitive lipase</subject><subject>Hormones - metabolism</subject><subject>HPA</subject><subject>HSL</subject><subject>Humans</subject><subject>hypothalamo-pituitary-adrenal</subject><subject>Hypothalamus</subject><subject>IML</subject><subject>intermediolateral column of the spinal cord</subject><subject>L/D</subject><subject>light/dark</subject><subject>lipoprotein lipase</subject><subject>Liver</subject><subject>LPL</subject><subject>medial preoptic area</subject><subject>Melatonin</subject><subject>messenger RNA</subject><subject>MPOA</subject><subject>mRNA</subject><subject>neuropeptide FF</subject><subject>neuropeptide Y</subject><subject>NPFF</subject><subject>NPY</subject><subject>Orexin</subject><subject>PACAP</subject><subject>paraventricular nucleus of the hypothalamus</subject><subject>pePVN</subject><subject>Per</subject><subject>period</subject><subject>periventricular nucleus of the hypothalamus</subject><subject>physical activity</subject><subject>pituitary adenylcyclase activating peptide</subject><subject>PVN</subject><subject>rate of (glucose) appearance</subject><subject>restricted feeding</subject><subject>SCN</subject><subject>SHR</subject><subject>society</subject><subject>SON</subject><subject>spontaneously hypertensive rat</subject><subject>subparaventricular nucleus of the hypothalamus</subject><subject>subPVN</subject><subject>suprachiasmatic nuclei</subject><subject>Suprachiasmatic Nucleus - metabolism</subject><subject>Suprachiasmatic Nucleus - physiology</subject><subject>supraoptic nuclei</subject><subject>thyrotropin-releasing hormone</subject><subject>TRH</subject><subject>tyrosine hydroxylase</subject><subject>vasoactive intestinal peptide</subject><subject>ventromedial nucleus of the hypothalamus</subject><subject>VIP</subject><subject>VMH</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1u1DAURiMEotPCI4Cyg03Cvf6J7Q2ojFqKVMGisLYc2ykeZeLBzhTN2-PRTCvYUFa25eOjz_puVb1CaBGwe7dqB9_n0c8tAcQWaAsEn1QLlII2lHXyabUAQNZwoehJdZrzCspZonpenRBkyCiKRaWWIVnjgplqF3LabuYQp9pMrr5ZfqltnOYUxzoOtZ98ut3Vaz-bPo4hr19UzwYzZv_yuJ5V3y8vvi2vmuuvnz4vz68b23VENg6VAIOWcwemFwoFl0CNctYxaT2DflBMKdIRUIR0QDn3A2WKWxBgDaNn1fuDd7Pt195ZXyKZUW9SWJu009EE_ffNFH7o23inKSguOlUEb46CFH9ufZ71OmTrx9FMPm6zViiBEcL4o6TsBCWkhCvk23-SKCjlVILCgvIDalPMOfnhITqC3lepV_pYpd5XqYHqUmV59_rPfz-8uu-uAFcH4FcY_e7_rPry4iO52c_FfiwQy04wWVQfDipfirwLPulsg5-sdyF5O2sXwyNpfwNbRMYR</recordid><startdate>20110520</startdate><enddate>20110520</enddate><creator>Kalsbeek, Andries</creator><creator>Scheer, Frank A.</creator><creator>Perreau-Lenz, Stephanie</creator><creator>La Fleur, Susanne E.</creator><creator>Yi, Chun-Xia</creator><creator>Fliers, Eric</creator><creator>Buijs, Ruud M.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>7ST</scope><scope>7TK</scope><scope>C1K</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20110520</creationdate><title>Circadian disruption and SCN control of energy metabolism</title><author>Kalsbeek, Andries ; Scheer, Frank A. ; Perreau-Lenz, Stephanie ; La Fleur, Susanne E. ; Yi, Chun-Xia ; Fliers, Eric ; Buijs, Ruud M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6628-d1970a1c55d0ab79175803a9dcd48ce40bf9499262092260355ef3495c070ca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ACTH</topic><topic>ad libitum</topic><topic>Adipose Tissue - metabolism</topic><topic>adrenocorticotrophic hormone</topic><topic>Animals</topic><topic>ANS</topic><topic>Autonomic nervous system</topic><topic>Autonomic Nervous System - metabolism</topic><topic>Autonomic Nervous System - physiology</topic><topic>biological clocks</topic><topic>Bmal</topic><topic>brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT) like</topic><topic>cardiovascular system</topic><topic>cerebrospinal fluid</topic><topic>circadian locomotor output cycles kaput</topic><topic>Circadian Rhythm - physiology</topic><topic>CLOCK</topic><topic>corticotrophin-releasing hormone</topic><topic>CRH</topic><topic>CRY</topic><topic>cryptochrome</topic><topic>CSF</topic><topic>DMH</topic><topic>dorsomedial nucleus of the hypothalamus</topic><topic>energy</topic><topic>energy metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>FFA</topic><topic>forced desynchrony</topic><topic>free fatty acid</topic><topic>GABA</topic><topic>Gamma amino butyric acid</topic><topic>Glucose</topic><topic>GnRH</topic><topic>gonadotropin-releasing hormone</topic><topic>high energy foods</topic><topic>hormone sensitive lipase</topic><topic>Hormones - metabolism</topic><topic>HPA</topic><topic>HSL</topic><topic>Humans</topic><topic>hypothalamo-pituitary-adrenal</topic><topic>Hypothalamus</topic><topic>IML</topic><topic>intermediolateral column of the spinal cord</topic><topic>L/D</topic><topic>light/dark</topic><topic>lipoprotein lipase</topic><topic>Liver</topic><topic>LPL</topic><topic>medial preoptic area</topic><topic>Melatonin</topic><topic>messenger RNA</topic><topic>MPOA</topic><topic>mRNA</topic><topic>neuropeptide FF</topic><topic>neuropeptide Y</topic><topic>NPFF</topic><topic>NPY</topic><topic>Orexin</topic><topic>PACAP</topic><topic>paraventricular nucleus of the hypothalamus</topic><topic>pePVN</topic><topic>Per</topic><topic>period</topic><topic>periventricular nucleus of the hypothalamus</topic><topic>physical activity</topic><topic>pituitary adenylcyclase activating peptide</topic><topic>PVN</topic><topic>rate of (glucose) appearance</topic><topic>restricted feeding</topic><topic>SCN</topic><topic>SHR</topic><topic>society</topic><topic>SON</topic><topic>spontaneously hypertensive rat</topic><topic>subparaventricular nucleus of the hypothalamus</topic><topic>subPVN</topic><topic>suprachiasmatic nuclei</topic><topic>Suprachiasmatic Nucleus - metabolism</topic><topic>Suprachiasmatic Nucleus - physiology</topic><topic>supraoptic nuclei</topic><topic>thyrotropin-releasing hormone</topic><topic>TRH</topic><topic>tyrosine hydroxylase</topic><topic>vasoactive intestinal peptide</topic><topic>ventromedial nucleus of the hypothalamus</topic><topic>VIP</topic><topic>VMH</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalsbeek, Andries</creatorcontrib><creatorcontrib>Scheer, Frank A.</creatorcontrib><creatorcontrib>Perreau-Lenz, Stephanie</creatorcontrib><creatorcontrib>La Fleur, Susanne E.</creatorcontrib><creatorcontrib>Yi, Chun-Xia</creatorcontrib><creatorcontrib>Fliers, Eric</creatorcontrib><creatorcontrib>Buijs, Ruud M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalsbeek, Andries</au><au>Scheer, Frank A.</au><au>Perreau-Lenz, Stephanie</au><au>La Fleur, Susanne E.</au><au>Yi, Chun-Xia</au><au>Fliers, Eric</au><au>Buijs, Ruud M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circadian disruption and SCN control of energy metabolism</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2011-05-20</date><risdate>2011</risdate><volume>585</volume><issue>10</issue><spage>1412</spage><epage>1426</epage><pages>1412-1426</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>In this review we first present the anatomical pathways used by the suprachiasmatic nuclei to enforce its rhythmicity onto the body, especially its energy homeostatic system. The experimental data show that by activating the orexin system at the start of the active phase, the biological clock not only ensures that we wake up on time, but also that our glucose metabolism and cardiovascular system are prepared for increased activity. The drawback of such a highly integrated system, however, becomes visible when our daily lives are not fully synchronized with the environment. Thus, in addition to increased physical activity and decreased intake of high-energy food, also a well-lighted and fully resonating biological clock may help to withstand the increasing “diabetogenic” pressure of today’s 24/7 society.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>21414317</pmid><doi>10.1016/j.febslet.2011.03.021</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-5793
ispartof FEBS letters, 2011-05, Vol.585 (10), p.1412-1426
issn 0014-5793
1873-3468
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3095769
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects ACTH
ad libitum
Adipose Tissue - metabolism
adrenocorticotrophic hormone
Animals
ANS
Autonomic nervous system
Autonomic Nervous System - metabolism
Autonomic Nervous System - physiology
biological clocks
Bmal
brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT) like
cardiovascular system
cerebrospinal fluid
circadian locomotor output cycles kaput
Circadian Rhythm - physiology
CLOCK
corticotrophin-releasing hormone
CRH
CRY
cryptochrome
CSF
DMH
dorsomedial nucleus of the hypothalamus
energy
energy metabolism
Energy Metabolism - physiology
FFA
forced desynchrony
free fatty acid
GABA
Gamma amino butyric acid
Glucose
GnRH
gonadotropin-releasing hormone
high energy foods
hormone sensitive lipase
Hormones - metabolism
HPA
HSL
Humans
hypothalamo-pituitary-adrenal
Hypothalamus
IML
intermediolateral column of the spinal cord
L/D
light/dark
lipoprotein lipase
Liver
LPL
medial preoptic area
Melatonin
messenger RNA
MPOA
mRNA
neuropeptide FF
neuropeptide Y
NPFF
NPY
Orexin
PACAP
paraventricular nucleus of the hypothalamus
pePVN
Per
period
periventricular nucleus of the hypothalamus
physical activity
pituitary adenylcyclase activating peptide
PVN
rate of (glucose) appearance
restricted feeding
SCN
SHR
society
SON
spontaneously hypertensive rat
subparaventricular nucleus of the hypothalamus
subPVN
suprachiasmatic nuclei
Suprachiasmatic Nucleus - metabolism
Suprachiasmatic Nucleus - physiology
supraoptic nuclei
thyrotropin-releasing hormone
TRH
tyrosine hydroxylase
vasoactive intestinal peptide
ventromedial nucleus of the hypothalamus
VIP
VMH
title Circadian disruption and SCN control of energy metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circadian%20disruption%20and%20SCN%20control%20of%20energy%20metabolism&rft.jtitle=FEBS%20letters&rft.au=Kalsbeek,%20Andries&rft.date=2011-05-20&rft.volume=585&rft.issue=10&rft.spage=1412&rft.epage=1426&rft.pages=1412-1426&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1016/j.febslet.2011.03.021&rft_dat=%3Cproquest_pubme%3E867322349%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733538091&rft_id=info:pmid/21414317&rft_els_id=S0014579311001748&rfr_iscdi=true