Crystal Structures of Human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating Protein (RabGAP) Domains Reveal Critical Elements for GLUT4 Translocation

We have solved the x-ray crystal structures of the RabGAP domains of human TBC1D1 and human TBC1D4 (AS160), at 2.2 and 3.5 Å resolution, respectively. Like the yeast Gyp1p RabGAP domain, whose structure was solved previously in complex with mouse Rab33B, the human TBC1D1 and TBC1D4 domains both have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-05, Vol.286 (20), p.18130-18138
Hauptverfasser: Park, Sang-Youn, Jin, Wanzhu, Woo, Ju Rang, Shoelson, Steven E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18138
container_issue 20
container_start_page 18130
container_title The Journal of biological chemistry
container_volume 286
creator Park, Sang-Youn
Jin, Wanzhu
Woo, Ju Rang
Shoelson, Steven E.
description We have solved the x-ray crystal structures of the RabGAP domains of human TBC1D1 and human TBC1D4 (AS160), at 2.2 and 3.5 Å resolution, respectively. Like the yeast Gyp1p RabGAP domain, whose structure was solved previously in complex with mouse Rab33B, the human TBC1D1 and TBC1D4 domains both have 16 α-helices and no β-sheet elements. We expected the yeast Gyp1p RabGAP/mouse Rab33B structure to predict the corresponding interfaces between cognate mammalian RabGAPs and Rabs, but found that residues were poorly conserved. We further tested the relevance of this model by Ala-scanning mutagenesis, but only one of five substitutions within the inferred binding site of the TBC1D1 RabGAP significantly perturbed catalytic efficiency. In addition, substitution of TBC1D1 residues with corresponding residues from Gyp1p did not enhance catalytic efficiency. We hypothesized that biologically relevant RabGAP/Rab partners utilize additional contacts not described in the yeast Gyp1p/mouse Rab33B structure, which we predicted using our two new human TBC1D1 and TBC1D4 structures. Ala substitution of TBC1D1 Met930, corresponding to a residue outside of the Gyp1p/Rab33B contact, substantially reduced catalytic activity. GLUT4 translocation assays confirmed the biological relevance of our findings. Substitutions with lowest RabGAP activity, including catalytically dead RK and Met930 and Leu1019 predicted to perturb Rab binding, confirmed that biological activity requires contacts between cognate RabGAPs and Rabs beyond those in the yeast Gyp1p RabGAP/mouse Rab33B structure.
doi_str_mv 10.1074/jbc.M110.217323
format Article
fullrecord <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3093885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820512519</els_id><sourcerecordid>21454505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-a64eb0bbb8d14b4f7c58e0d4b1fa512cad9be6f0ece9ba037dd5f0c7bc747f543</originalsourceid><addsrcrecordid>eNp1kUFP3DAQha2qVdkC594qqyc4BOzE3iSXSttAl0pbdQVB6s2ynQkYJTayvSvxP_jBOEqL2kN98Yzm-b2RP4Q-UnJGScnOH5Q--0FTl9OyyIs3aEFJVWQFp7_eogUhOc3qnFcH6EMIDyQdVtP36CCnjDNO-AI9N_4pRDngm-h3Ou48BOx6fLUbpcXt14ZeUCxtN5cMn6xu6JKc4mup1u1WBsikjmYvo7F3eOtdBGPxyTRdbU_xhRulsQFfwx5SRONNNDoVlwOMYGPAvfN4vbltGW69tGFwOjk5e4Te9XIIcPz7PkS33y7b5irb_Fx_b1abTPOCx0wuGSiilKo6yhTrS80rIB1TtJec5lp2tYJlT0BDrSQpyq7jPdGl0iUre86KQ_Rl9n3cqRE6nXbychCP3ozSPwknjfh3Ys29uHN7UZC6qCqeDD7PBi5EI4I2EfS9dtaCjoISRsu8SqLzWaS9C8FD_xpAiZgoikRRTBTFTDG9-PT3Xq_6P9iSoJ4FkH5nb8BP2WA1dMZP0Z0z_zV_AQiGrF8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crystal Structures of Human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating Protein (RabGAP) Domains Reveal Critical Elements for GLUT4 Translocation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Park, Sang-Youn ; Jin, Wanzhu ; Woo, Ju Rang ; Shoelson, Steven E.</creator><creatorcontrib>Park, Sang-Youn ; Jin, Wanzhu ; Woo, Ju Rang ; Shoelson, Steven E. ; BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><description>We have solved the x-ray crystal structures of the RabGAP domains of human TBC1D1 and human TBC1D4 (AS160), at 2.2 and 3.5 Å resolution, respectively. Like the yeast Gyp1p RabGAP domain, whose structure was solved previously in complex with mouse Rab33B, the human TBC1D1 and TBC1D4 domains both have 16 α-helices and no β-sheet elements. We expected the yeast Gyp1p RabGAP/mouse Rab33B structure to predict the corresponding interfaces between cognate mammalian RabGAPs and Rabs, but found that residues were poorly conserved. We further tested the relevance of this model by Ala-scanning mutagenesis, but only one of five substitutions within the inferred binding site of the TBC1D1 RabGAP significantly perturbed catalytic efficiency. In addition, substitution of TBC1D1 residues with corresponding residues from Gyp1p did not enhance catalytic efficiency. We hypothesized that biologically relevant RabGAP/Rab partners utilize additional contacts not described in the yeast Gyp1p/mouse Rab33B structure, which we predicted using our two new human TBC1D1 and TBC1D4 structures. Ala substitution of TBC1D1 Met930, corresponding to a residue outside of the Gyp1p/Rab33B contact, substantially reduced catalytic activity. GLUT4 translocation assays confirmed the biological relevance of our findings. Substitutions with lowest RabGAP activity, including catalytically dead RK and Met930 and Leu1019 predicted to perturb Rab binding, confirmed that biological activity requires contacts between cognate RabGAPs and Rabs beyond those in the yeast Gyp1p RabGAP/mouse Rab33B structure.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.217323</identifier><identifier>PMID: 21454505</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; ADIPOSE TISSUE ; Adipose Tissue Metabolism ; Animals ; BASIC BIOLOGICAL SCIENCES ; Cell Metabolism ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; EFFICIENCY ; GLUCOSE ; Glucose Transport ; Glucose Transporter Protein ; Glucose Transporter Type 4 ; GTPase-Activating Proteins - chemistry ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; HUMAN POPULATIONS ; Humans ; INTERFACES ; METABOLISM ; MICE ; Models, Molecular ; MUTAGENESIS ; PROTEIN STRUCTURE ; Protein Structure and Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; PROTEINS ; Rab ; rab GTP-Binding Proteins - chemistry ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - metabolism ; RabGAP ; RESIDUES ; RESOLUTION ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Structure-Activity Relationship ; TRANSLOCATION ; YEASTS</subject><ispartof>The Journal of biological chemistry, 2011-05, Vol.286 (20), p.18130-18138</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-a64eb0bbb8d14b4f7c58e0d4b1fa512cad9be6f0ece9ba037dd5f0c7bc747f543</citedby><cites>FETCH-LOGICAL-c535t-a64eb0bbb8d14b4f7c58e0d4b1fa512cad9be6f0ece9ba037dd5f0c7bc747f543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093885/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093885/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27902,27903,53768,53770</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21454505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1041728$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Sang-Youn</creatorcontrib><creatorcontrib>Jin, Wanzhu</creatorcontrib><creatorcontrib>Woo, Ju Rang</creatorcontrib><creatorcontrib>Shoelson, Steven E.</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><title>Crystal Structures of Human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating Protein (RabGAP) Domains Reveal Critical Elements for GLUT4 Translocation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>We have solved the x-ray crystal structures of the RabGAP domains of human TBC1D1 and human TBC1D4 (AS160), at 2.2 and 3.5 Å resolution, respectively. Like the yeast Gyp1p RabGAP domain, whose structure was solved previously in complex with mouse Rab33B, the human TBC1D1 and TBC1D4 domains both have 16 α-helices and no β-sheet elements. We expected the yeast Gyp1p RabGAP/mouse Rab33B structure to predict the corresponding interfaces between cognate mammalian RabGAPs and Rabs, but found that residues were poorly conserved. We further tested the relevance of this model by Ala-scanning mutagenesis, but only one of five substitutions within the inferred binding site of the TBC1D1 RabGAP significantly perturbed catalytic efficiency. In addition, substitution of TBC1D1 residues with corresponding residues from Gyp1p did not enhance catalytic efficiency. We hypothesized that biologically relevant RabGAP/Rab partners utilize additional contacts not described in the yeast Gyp1p/mouse Rab33B structure, which we predicted using our two new human TBC1D1 and TBC1D4 structures. Ala substitution of TBC1D1 Met930, corresponding to a residue outside of the Gyp1p/Rab33B contact, substantially reduced catalytic activity. GLUT4 translocation assays confirmed the biological relevance of our findings. Substitutions with lowest RabGAP activity, including catalytically dead RK and Met930 and Leu1019 predicted to perturb Rab binding, confirmed that biological activity requires contacts between cognate RabGAPs and Rabs beyond those in the yeast Gyp1p RabGAP/mouse Rab33B structure.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ADIPOSE TISSUE</subject><subject>Adipose Tissue Metabolism</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Cell Metabolism</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>EFFICIENCY</subject><subject>GLUCOSE</subject><subject>Glucose Transport</subject><subject>Glucose Transporter Protein</subject><subject>Glucose Transporter Type 4</subject><subject>GTPase-Activating Proteins - chemistry</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>HUMAN POPULATIONS</subject><subject>Humans</subject><subject>INTERFACES</subject><subject>METABOLISM</subject><subject>MICE</subject><subject>Models, Molecular</subject><subject>MUTAGENESIS</subject><subject>PROTEIN STRUCTURE</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>Rab</subject><subject>rab GTP-Binding Proteins - chemistry</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>RabGAP</subject><subject>RESIDUES</subject><subject>RESOLUTION</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>TRANSLOCATION</subject><subject>YEASTS</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFP3DAQha2qVdkC594qqyc4BOzE3iSXSttAl0pbdQVB6s2ynQkYJTayvSvxP_jBOEqL2kN98Yzm-b2RP4Q-UnJGScnOH5Q--0FTl9OyyIs3aEFJVWQFp7_eogUhOc3qnFcH6EMIDyQdVtP36CCnjDNO-AI9N_4pRDngm-h3Ou48BOx6fLUbpcXt14ZeUCxtN5cMn6xu6JKc4mup1u1WBsikjmYvo7F3eOtdBGPxyTRdbU_xhRulsQFfwx5SRONNNDoVlwOMYGPAvfN4vbltGW69tGFwOjk5e4Te9XIIcPz7PkS33y7b5irb_Fx_b1abTPOCx0wuGSiilKo6yhTrS80rIB1TtJec5lp2tYJlT0BDrSQpyq7jPdGl0iUre86KQ_Rl9n3cqRE6nXbychCP3ozSPwknjfh3Ys29uHN7UZC6qCqeDD7PBi5EI4I2EfS9dtaCjoISRsu8SqLzWaS9C8FD_xpAiZgoikRRTBTFTDG9-PT3Xq_6P9iSoJ4FkH5nb8BP2WA1dMZP0Z0z_zV_AQiGrF8</recordid><startdate>20110520</startdate><enddate>20110520</enddate><creator>Park, Sang-Youn</creator><creator>Jin, Wanzhu</creator><creator>Woo, Ju Rang</creator><creator>Shoelson, Steven E.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20110520</creationdate><title>Crystal Structures of Human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating Protein (RabGAP) Domains Reveal Critical Elements for GLUT4 Translocation</title><author>Park, Sang-Youn ; Jin, Wanzhu ; Woo, Ju Rang ; Shoelson, Steven E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-a64eb0bbb8d14b4f7c58e0d4b1fa512cad9be6f0ece9ba037dd5f0c7bc747f543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ADIPOSE TISSUE</topic><topic>Adipose Tissue Metabolism</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Cell Metabolism</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>EFFICIENCY</topic><topic>GLUCOSE</topic><topic>Glucose Transport</topic><topic>Glucose Transporter Protein</topic><topic>Glucose Transporter Type 4</topic><topic>GTPase-Activating Proteins - chemistry</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>HUMAN POPULATIONS</topic><topic>Humans</topic><topic>INTERFACES</topic><topic>METABOLISM</topic><topic>MICE</topic><topic>Models, Molecular</topic><topic>MUTAGENESIS</topic><topic>PROTEIN STRUCTURE</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>Rab</topic><topic>rab GTP-Binding Proteins - chemistry</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>RabGAP</topic><topic>RESIDUES</topic><topic>RESOLUTION</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>TRANSLOCATION</topic><topic>YEASTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sang-Youn</creatorcontrib><creatorcontrib>Jin, Wanzhu</creatorcontrib><creatorcontrib>Woo, Ju Rang</creatorcontrib><creatorcontrib>Shoelson, Steven E.</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sang-Youn</au><au>Jin, Wanzhu</au><au>Woo, Ju Rang</au><au>Shoelson, Steven E.</au><aucorp>BROOKHAVEN NATIONAL LABORATORY (BNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structures of Human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating Protein (RabGAP) Domains Reveal Critical Elements for GLUT4 Translocation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-05-20</date><risdate>2011</risdate><volume>286</volume><issue>20</issue><spage>18130</spage><epage>18138</epage><pages>18130-18138</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>We have solved the x-ray crystal structures of the RabGAP domains of human TBC1D1 and human TBC1D4 (AS160), at 2.2 and 3.5 Å resolution, respectively. Like the yeast Gyp1p RabGAP domain, whose structure was solved previously in complex with mouse Rab33B, the human TBC1D1 and TBC1D4 domains both have 16 α-helices and no β-sheet elements. We expected the yeast Gyp1p RabGAP/mouse Rab33B structure to predict the corresponding interfaces between cognate mammalian RabGAPs and Rabs, but found that residues were poorly conserved. We further tested the relevance of this model by Ala-scanning mutagenesis, but only one of five substitutions within the inferred binding site of the TBC1D1 RabGAP significantly perturbed catalytic efficiency. In addition, substitution of TBC1D1 residues with corresponding residues from Gyp1p did not enhance catalytic efficiency. We hypothesized that biologically relevant RabGAP/Rab partners utilize additional contacts not described in the yeast Gyp1p/mouse Rab33B structure, which we predicted using our two new human TBC1D1 and TBC1D4 structures. Ala substitution of TBC1D1 Met930, corresponding to a residue outside of the Gyp1p/Rab33B contact, substantially reduced catalytic activity. GLUT4 translocation assays confirmed the biological relevance of our findings. Substitutions with lowest RabGAP activity, including catalytically dead RK and Met930 and Leu1019 predicted to perturb Rab binding, confirmed that biological activity requires contacts between cognate RabGAPs and Rabs beyond those in the yeast Gyp1p RabGAP/mouse Rab33B structure.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21454505</pmid><doi>10.1074/jbc.M110.217323</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-05, Vol.286 (20), p.18130-18138
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3093885
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects 60 APPLIED LIFE SCIENCES
ADIPOSE TISSUE
Adipose Tissue Metabolism
Animals
BASIC BIOLOGICAL SCIENCES
Cell Metabolism
CRYSTAL STRUCTURE
Crystallography, X-Ray
EFFICIENCY
GLUCOSE
Glucose Transport
Glucose Transporter Protein
Glucose Transporter Type 4
GTPase-Activating Proteins - chemistry
GTPase-Activating Proteins - genetics
GTPase-Activating Proteins - metabolism
HUMAN POPULATIONS
Humans
INTERFACES
METABOLISM
MICE
Models, Molecular
MUTAGENESIS
PROTEIN STRUCTURE
Protein Structure and Folding
Protein Structure, Secondary
Protein Structure, Tertiary
PROTEINS
Rab
rab GTP-Binding Proteins - chemistry
rab GTP-Binding Proteins - genetics
rab GTP-Binding Proteins - metabolism
RabGAP
RESIDUES
RESOLUTION
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Structure-Activity Relationship
TRANSLOCATION
YEASTS
title Crystal Structures of Human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating Protein (RabGAP) Domains Reveal Critical Elements for GLUT4 Translocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structures%20of%20Human%20TBC1D1%20and%20TBC1D4%20(AS160)%20RabGTPase-activating%20Protein%20(RabGAP)%20Domains%20Reveal%20Critical%20Elements%20for%20GLUT4%20Translocation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Park,%20Sang-Youn&rft.aucorp=BROOKHAVEN%20NATIONAL%20LABORATORY%20(BNL)&rft.date=2011-05-20&rft.volume=286&rft.issue=20&rft.spage=18130&rft.epage=18138&rft.pages=18130-18138&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.217323&rft_dat=%3Cpubmed_osti_%3E21454505%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21454505&rft_els_id=S0021925820512519&rfr_iscdi=true