The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function

Cu + -ATPases play a key role in bacterial Cu + homeostasis by participating in Cu + detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P 1B-1 type ATPases, has provided structural and mechanistic details on this group o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometals 2011-06, Vol.24 (3), p.467-475
Hauptverfasser: Raimunda, Daniel, González-Guerrero, Manuel, Leeber, Blaise W., Argüello, José M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue 3
container_start_page 467
container_title Biometals
container_volume 24
creator Raimunda, Daniel
González-Guerrero, Manuel
Leeber, Blaise W.
Argüello, José M.
description Cu + -ATPases play a key role in bacterial Cu + homeostasis by participating in Cu + detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P 1B-1 type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu + with high affinity in a trigonal planar geometry. The cytoplasmic Cu + chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu + is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu + -ATPases drive cytoplasmic Cu + efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu + -efflux pumps responsible for Cu + tolerance, like the Escherichia coli CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments.
doi_str_mv 10.1007/s10534-010-9404-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3092005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>866045965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-5aef1089c48e41b3afadfc87c59d7b4d470af9a43856b68247f968b064d066ac3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EosvCA3BBvnFAhnHi2A4HpGoFLVIlOCxna-KMu6mSeLEdBG9PVlsquHCaw3zzz2g-xl5KeCsBzLssoamVAAmiVaBE_YhtZGMqYY2pH7MNtFoLsEpdsGc53wFAa0A_ZReVrCRIqzeM9gfiJeGcjzEVPpE_4DzkicfAO_SF0oAj3y1vxOX-K2bK73k_5DLMvnAKYVx-8oSFMscej4V6XuIKhECJ5sLDsnJDnJ-zJwHHTC_u65Z9-_Rxv7sWN1-uPu8ub4RvwBTRIAUJtvXKkpJdjQH74K3xTdubTvXKAIYWVW0b3WlbKRNabTvQqget0ddb9uGce1y6iXq_3pBwdMc0TJh-uYiD-7czDwd3G3-4GtoK1mdu2ev7gBS_L5SLm4bsaRxxprhkZ7UG1bT6RMoz6VPMOVF42CLBney4sx232nEnO65eZ179fd7DxB8dK1Cdgby25ltK7i4uaV5f9p_U3z5VnK4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866045965</pqid></control><display><type>article</type><title>The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Raimunda, Daniel ; González-Guerrero, Manuel ; Leeber, Blaise W. ; Argüello, José M.</creator><creatorcontrib>Raimunda, Daniel ; González-Guerrero, Manuel ; Leeber, Blaise W. ; Argüello, José M.</creatorcontrib><description>Cu + -ATPases play a key role in bacterial Cu + homeostasis by participating in Cu + detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P 1B-1 type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu + with high affinity in a trigonal planar geometry. The cytoplasmic Cu + chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu + is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu + -ATPases drive cytoplasmic Cu + efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu + -efflux pumps responsible for Cu + tolerance, like the Escherichia coli CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments.</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-010-9404-3</identifier><identifier>PMID: 21210186</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - classification ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Bacteria - enzymology ; Bacterial Proteins - chemistry ; Bacterial Proteins - classification ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biochemistry ; Biological Transport - physiology ; Biomedical and Life Sciences ; Cation Transport Proteins - chemistry ; Cation Transport Proteins - classification ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Cell Biology ; Copper - metabolism ; Copper-transporting ATPases ; Escherichia coli Proteins ; Homeostasis ; Life Sciences ; Medicine/Public Health ; Microbiology ; Models, Molecular ; Molecular Chaperones - metabolism ; Pharmacology/Toxicology ; Phylogeny ; Plant Physiology ; Protein Structure, Tertiary</subject><ispartof>Biometals, 2011-06, Vol.24 (3), p.467-475</ispartof><rights>Springer Science+Business Media, LLC. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-5aef1089c48e41b3afadfc87c59d7b4d470af9a43856b68247f968b064d066ac3</citedby><cites>FETCH-LOGICAL-c507t-5aef1089c48e41b3afadfc87c59d7b4d470af9a43856b68247f968b064d066ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-010-9404-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-010-9404-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21210186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raimunda, Daniel</creatorcontrib><creatorcontrib>González-Guerrero, Manuel</creatorcontrib><creatorcontrib>Leeber, Blaise W.</creatorcontrib><creatorcontrib>Argüello, José M.</creatorcontrib><title>The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function</title><title>Biometals</title><addtitle>Biometals</addtitle><addtitle>Biometals</addtitle><description>Cu + -ATPases play a key role in bacterial Cu + homeostasis by participating in Cu + detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P 1B-1 type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu + with high affinity in a trigonal planar geometry. The cytoplasmic Cu + chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu + is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu + -ATPases drive cytoplasmic Cu + efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu + -efflux pumps responsible for Cu + tolerance, like the Escherichia coli CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - classification</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Bacteria - enzymology</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - classification</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biological Transport - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Cation Transport Proteins - chemistry</subject><subject>Cation Transport Proteins - classification</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Copper - metabolism</subject><subject>Copper-transporting ATPases</subject><subject>Escherichia coli Proteins</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Medicine/Public Health</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Molecular Chaperones - metabolism</subject><subject>Pharmacology/Toxicology</subject><subject>Phylogeny</subject><subject>Plant Physiology</subject><subject>Protein Structure, Tertiary</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EosvCA3BBvnFAhnHi2A4HpGoFLVIlOCxna-KMu6mSeLEdBG9PVlsquHCaw3zzz2g-xl5KeCsBzLssoamVAAmiVaBE_YhtZGMqYY2pH7MNtFoLsEpdsGc53wFAa0A_ZReVrCRIqzeM9gfiJeGcjzEVPpE_4DzkicfAO_SF0oAj3y1vxOX-K2bK73k_5DLMvnAKYVx-8oSFMscej4V6XuIKhECJ5sLDsnJDnJ-zJwHHTC_u65Z9-_Rxv7sWN1-uPu8ub4RvwBTRIAUJtvXKkpJdjQH74K3xTdubTvXKAIYWVW0b3WlbKRNabTvQqget0ddb9uGce1y6iXq_3pBwdMc0TJh-uYiD-7czDwd3G3-4GtoK1mdu2ev7gBS_L5SLm4bsaRxxprhkZ7UG1bT6RMoz6VPMOVF42CLBney4sx232nEnO65eZ179fd7DxB8dK1Cdgby25ltK7i4uaV5f9p_U3z5VnK4</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Raimunda, Daniel</creator><creator>González-Guerrero, Manuel</creator><creator>Leeber, Blaise W.</creator><creator>Argüello, José M.</creator><general>Springer Netherlands</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110601</creationdate><title>The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function</title><author>Raimunda, Daniel ; González-Guerrero, Manuel ; Leeber, Blaise W. ; Argüello, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-5aef1089c48e41b3afadfc87c59d7b4d470af9a43856b68247f968b064d066ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - classification</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Bacteria - enzymology</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - classification</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biological Transport - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Cation Transport Proteins - chemistry</topic><topic>Cation Transport Proteins - classification</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Copper - metabolism</topic><topic>Copper-transporting ATPases</topic><topic>Escherichia coli Proteins</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Medicine/Public Health</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Molecular Chaperones - metabolism</topic><topic>Pharmacology/Toxicology</topic><topic>Phylogeny</topic><topic>Plant Physiology</topic><topic>Protein Structure, Tertiary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raimunda, Daniel</creatorcontrib><creatorcontrib>González-Guerrero, Manuel</creatorcontrib><creatorcontrib>Leeber, Blaise W.</creatorcontrib><creatorcontrib>Argüello, José M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raimunda, Daniel</au><au>González-Guerrero, Manuel</au><au>Leeber, Blaise W.</au><au>Argüello, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><addtitle>Biometals</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>24</volume><issue>3</issue><spage>467</spage><epage>475</epage><pages>467-475</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>Cu + -ATPases play a key role in bacterial Cu + homeostasis by participating in Cu + detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P 1B-1 type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu + with high affinity in a trigonal planar geometry. The cytoplasmic Cu + chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu + is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu + -ATPases drive cytoplasmic Cu + efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu + -efflux pumps responsible for Cu + tolerance, like the Escherichia coli CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>21210186</pmid><doi>10.1007/s10534-010-9404-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0966-0844
ispartof Biometals, 2011-06, Vol.24 (3), p.467-475
issn 0966-0844
1572-8773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3092005
source MEDLINE; SpringerLink Journals
subjects Adenosine Triphosphatases - chemistry
Adenosine Triphosphatases - classification
Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - metabolism
Bacteria - enzymology
Bacterial Proteins - chemistry
Bacterial Proteins - classification
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biochemistry
Biological Transport - physiology
Biomedical and Life Sciences
Cation Transport Proteins - chemistry
Cation Transport Proteins - classification
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Cell Biology
Copper - metabolism
Copper-transporting ATPases
Escherichia coli Proteins
Homeostasis
Life Sciences
Medicine/Public Health
Microbiology
Models, Molecular
Molecular Chaperones - metabolism
Pharmacology/Toxicology
Phylogeny
Plant Physiology
Protein Structure, Tertiary
title The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transport%20mechanism%20of%20bacterial%20Cu+-ATPases:%20distinct%20efflux%20rates%20adapted%20to%20different%20function&rft.jtitle=Biometals&rft.au=Raimunda,%20Daniel&rft.date=2011-06-01&rft.volume=24&rft.issue=3&rft.spage=467&rft.epage=475&rft.pages=467-475&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-010-9404-3&rft_dat=%3Cproquest_pubme%3E866045965%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866045965&rft_id=info:pmid/21210186&rfr_iscdi=true