The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function
Cu + -ATPases play a key role in bacterial Cu + homeostasis by participating in Cu + detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P 1B-1 type ATPases, has provided structural and mechanistic details on this group o...
Gespeichert in:
Veröffentlicht in: | Biometals 2011-06, Vol.24 (3), p.467-475 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 475 |
---|---|
container_issue | 3 |
container_start_page | 467 |
container_title | Biometals |
container_volume | 24 |
creator | Raimunda, Daniel González-Guerrero, Manuel Leeber, Blaise W. Argüello, José M. |
description | Cu
+
-ATPases play a key role in bacterial Cu
+
homeostasis by participating in Cu
+
detoxification and cuproprotein assembly. Characterization of
Archaeoglobus fulgidus
CopA, a model protein within the subfamily of P
1B-1
type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu
+
with high affinity in a trigonal planar geometry. The cytoplasmic Cu
+
chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu
+
is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu
+
-ATPases drive cytoplasmic Cu
+
efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu
+
-efflux pumps responsible for Cu
+
tolerance, like the
Escherichia coli
CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments. |
doi_str_mv | 10.1007/s10534-010-9404-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3092005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>866045965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-5aef1089c48e41b3afadfc87c59d7b4d470af9a43856b68247f968b064d066ac3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EosvCA3BBvnFAhnHi2A4HpGoFLVIlOCxna-KMu6mSeLEdBG9PVlsquHCaw3zzz2g-xl5KeCsBzLssoamVAAmiVaBE_YhtZGMqYY2pH7MNtFoLsEpdsGc53wFAa0A_ZReVrCRIqzeM9gfiJeGcjzEVPpE_4DzkicfAO_SF0oAj3y1vxOX-K2bK73k_5DLMvnAKYVx-8oSFMscej4V6XuIKhECJ5sLDsnJDnJ-zJwHHTC_u65Z9-_Rxv7sWN1-uPu8ub4RvwBTRIAUJtvXKkpJdjQH74K3xTdubTvXKAIYWVW0b3WlbKRNabTvQqget0ddb9uGce1y6iXq_3pBwdMc0TJh-uYiD-7czDwd3G3-4GtoK1mdu2ev7gBS_L5SLm4bsaRxxprhkZ7UG1bT6RMoz6VPMOVF42CLBney4sx232nEnO65eZ179fd7DxB8dK1Cdgby25ltK7i4uaV5f9p_U3z5VnK4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866045965</pqid></control><display><type>article</type><title>The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Raimunda, Daniel ; González-Guerrero, Manuel ; Leeber, Blaise W. ; Argüello, José M.</creator><creatorcontrib>Raimunda, Daniel ; González-Guerrero, Manuel ; Leeber, Blaise W. ; Argüello, José M.</creatorcontrib><description>Cu
+
-ATPases play a key role in bacterial Cu
+
homeostasis by participating in Cu
+
detoxification and cuproprotein assembly. Characterization of
Archaeoglobus fulgidus
CopA, a model protein within the subfamily of P
1B-1
type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu
+
with high affinity in a trigonal planar geometry. The cytoplasmic Cu
+
chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu
+
is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu
+
-ATPases drive cytoplasmic Cu
+
efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu
+
-efflux pumps responsible for Cu
+
tolerance, like the
Escherichia coli
CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments.</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-010-9404-3</identifier><identifier>PMID: 21210186</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - classification ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Bacteria - enzymology ; Bacterial Proteins - chemistry ; Bacterial Proteins - classification ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biochemistry ; Biological Transport - physiology ; Biomedical and Life Sciences ; Cation Transport Proteins - chemistry ; Cation Transport Proteins - classification ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Cell Biology ; Copper - metabolism ; Copper-transporting ATPases ; Escherichia coli Proteins ; Homeostasis ; Life Sciences ; Medicine/Public Health ; Microbiology ; Models, Molecular ; Molecular Chaperones - metabolism ; Pharmacology/Toxicology ; Phylogeny ; Plant Physiology ; Protein Structure, Tertiary</subject><ispartof>Biometals, 2011-06, Vol.24 (3), p.467-475</ispartof><rights>Springer Science+Business Media, LLC. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-5aef1089c48e41b3afadfc87c59d7b4d470af9a43856b68247f968b064d066ac3</citedby><cites>FETCH-LOGICAL-c507t-5aef1089c48e41b3afadfc87c59d7b4d470af9a43856b68247f968b064d066ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-010-9404-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-010-9404-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21210186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raimunda, Daniel</creatorcontrib><creatorcontrib>González-Guerrero, Manuel</creatorcontrib><creatorcontrib>Leeber, Blaise W.</creatorcontrib><creatorcontrib>Argüello, José M.</creatorcontrib><title>The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function</title><title>Biometals</title><addtitle>Biometals</addtitle><addtitle>Biometals</addtitle><description>Cu
+
-ATPases play a key role in bacterial Cu
+
homeostasis by participating in Cu
+
detoxification and cuproprotein assembly. Characterization of
Archaeoglobus fulgidus
CopA, a model protein within the subfamily of P
1B-1
type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu
+
with high affinity in a trigonal planar geometry. The cytoplasmic Cu
+
chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu
+
is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu
+
-ATPases drive cytoplasmic Cu
+
efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu
+
-efflux pumps responsible for Cu
+
tolerance, like the
Escherichia coli
CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - classification</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Bacteria - enzymology</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - classification</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biological Transport - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Cation Transport Proteins - chemistry</subject><subject>Cation Transport Proteins - classification</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Copper - metabolism</subject><subject>Copper-transporting ATPases</subject><subject>Escherichia coli Proteins</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Medicine/Public Health</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Molecular Chaperones - metabolism</subject><subject>Pharmacology/Toxicology</subject><subject>Phylogeny</subject><subject>Plant Physiology</subject><subject>Protein Structure, Tertiary</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EosvCA3BBvnFAhnHi2A4HpGoFLVIlOCxna-KMu6mSeLEdBG9PVlsquHCaw3zzz2g-xl5KeCsBzLssoamVAAmiVaBE_YhtZGMqYY2pH7MNtFoLsEpdsGc53wFAa0A_ZReVrCRIqzeM9gfiJeGcjzEVPpE_4DzkicfAO_SF0oAj3y1vxOX-K2bK73k_5DLMvnAKYVx-8oSFMscej4V6XuIKhECJ5sLDsnJDnJ-zJwHHTC_u65Z9-_Rxv7sWN1-uPu8ub4RvwBTRIAUJtvXKkpJdjQH74K3xTdubTvXKAIYWVW0b3WlbKRNabTvQqget0ddb9uGce1y6iXq_3pBwdMc0TJh-uYiD-7czDwd3G3-4GtoK1mdu2ev7gBS_L5SLm4bsaRxxprhkZ7UG1bT6RMoz6VPMOVF42CLBney4sx232nEnO65eZ179fd7DxB8dK1Cdgby25ltK7i4uaV5f9p_U3z5VnK4</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Raimunda, Daniel</creator><creator>González-Guerrero, Manuel</creator><creator>Leeber, Blaise W.</creator><creator>Argüello, José M.</creator><general>Springer Netherlands</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110601</creationdate><title>The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function</title><author>Raimunda, Daniel ; González-Guerrero, Manuel ; Leeber, Blaise W. ; Argüello, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-5aef1089c48e41b3afadfc87c59d7b4d470af9a43856b68247f968b064d066ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - classification</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Bacteria - enzymology</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - classification</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biological Transport - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Cation Transport Proteins - chemistry</topic><topic>Cation Transport Proteins - classification</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Copper - metabolism</topic><topic>Copper-transporting ATPases</topic><topic>Escherichia coli Proteins</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Medicine/Public Health</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Molecular Chaperones - metabolism</topic><topic>Pharmacology/Toxicology</topic><topic>Phylogeny</topic><topic>Plant Physiology</topic><topic>Protein Structure, Tertiary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raimunda, Daniel</creatorcontrib><creatorcontrib>González-Guerrero, Manuel</creatorcontrib><creatorcontrib>Leeber, Blaise W.</creatorcontrib><creatorcontrib>Argüello, José M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raimunda, Daniel</au><au>González-Guerrero, Manuel</au><au>Leeber, Blaise W.</au><au>Argüello, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><addtitle>Biometals</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>24</volume><issue>3</issue><spage>467</spage><epage>475</epage><pages>467-475</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>Cu
+
-ATPases play a key role in bacterial Cu
+
homeostasis by participating in Cu
+
detoxification and cuproprotein assembly. Characterization of
Archaeoglobus fulgidus
CopA, a model protein within the subfamily of P
1B-1
type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu
+
with high affinity in a trigonal planar geometry. The cytoplasmic Cu
+
chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu
+
is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu
+
-ATPases drive cytoplasmic Cu
+
efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu
+
-efflux pumps responsible for Cu
+
tolerance, like the
Escherichia coli
CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>21210186</pmid><doi>10.1007/s10534-010-9404-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-0844 |
ispartof | Biometals, 2011-06, Vol.24 (3), p.467-475 |
issn | 0966-0844 1572-8773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3092005 |
source | MEDLINE; SpringerLink Journals |
subjects | Adenosine Triphosphatases - chemistry Adenosine Triphosphatases - classification Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism Bacteria - enzymology Bacterial Proteins - chemistry Bacterial Proteins - classification Bacterial Proteins - genetics Bacterial Proteins - metabolism Biochemistry Biological Transport - physiology Biomedical and Life Sciences Cation Transport Proteins - chemistry Cation Transport Proteins - classification Cation Transport Proteins - genetics Cation Transport Proteins - metabolism Cell Biology Copper - metabolism Copper-transporting ATPases Escherichia coli Proteins Homeostasis Life Sciences Medicine/Public Health Microbiology Models, Molecular Molecular Chaperones - metabolism Pharmacology/Toxicology Phylogeny Plant Physiology Protein Structure, Tertiary |
title | The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transport%20mechanism%20of%20bacterial%20Cu+-ATPases:%20distinct%20efflux%20rates%20adapted%20to%20different%20function&rft.jtitle=Biometals&rft.au=Raimunda,%20Daniel&rft.date=2011-06-01&rft.volume=24&rft.issue=3&rft.spage=467&rft.epage=475&rft.pages=467-475&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-010-9404-3&rft_dat=%3Cproquest_pubme%3E866045965%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866045965&rft_id=info:pmid/21210186&rfr_iscdi=true |