Dietary patterns in the Southampton Women's Survey
Objective: Dietary pattern analysis is receiving increasing attention as a means of summarizing the multidimensional nature of dietary data. This research aims to compare principal component analysis (PCA) and cluster analysis using dietary data collected from young women in the UK. Design: Diet was...
Gespeichert in:
Veröffentlicht in: | European journal of clinical nutrition 2006-12, Vol.60 (12), p.1391-1399 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1399 |
---|---|
container_issue | 12 |
container_start_page | 1391 |
container_title | European journal of clinical nutrition |
container_volume | 60 |
creator | Crozier, S.R Robinson, S.M Borland, S.E Inskip, H.M |
description | Objective: Dietary pattern analysis is receiving increasing attention as a means of summarizing the multidimensional nature of dietary data. This research aims to compare principal component analysis (PCA) and cluster analysis using dietary data collected from young women in the UK. Design: Diet was assessed using a 100-item interviewer-administered food frequency questionnaire. PCA and cluster analysis were used to examine dietary patterns. Setting: Southampton, UK. Subjects: A total of 6125 non-pregnant women aged 20-34 years. Results: PCA identified two important patterns: a 'prudent' diet and a 'high-energy' diet. Cluster analysis defined two clusters, a 'more healthy' and a 'less healthy' cluster. There was a strong association between the prudent diet score and the two clusters, such that the mean prudent diet score in the less healthy cluster was -0.73 standard deviations and in the more healthy cluster was +0.83 standard deviations; the difference in the high-energy diet score between the two clusters was considerably smaller. Conclusions: Both approaches revealed a similar dietary pattern. The continuous nature of the outcome of PCA was considered to be advantageous compared with the dichotomy identified using cluster analysis. |
doi_str_mv | 10.1038/sj.ejcn.1602469 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3091020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A194940519</galeid><sourcerecordid>A194940519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c649t-acffcb5a1f800428aef2ce394bb81de6da5771f787371c3eb616cea06f80a6863</originalsourceid><addsrcrecordid>eNp1ks1rGzEQxZfS0rhpz721S0vT0zqSVtJKl0JIPyHQgxt6FLI8smV2JVfSBvLfV4tNnZQEHQSa33szGl5VvcZojlErztN2Dlvj55gjQrl8Us0w7XjDOEVPqxmSjDYtQt1J9SKlLUKl2JHn1QnmAlHG2Kwinx1kHW_rnc4Zok-183XeQL0IY97oYZeDr3-HAfzHVC_GeAO3L6tnVvcJXh3u0-r665dfl9-bq5_fflxeXDWGU5kbbaw1S6axFQhRIjRYYqCVdLkUeAV8pVnXYduJru2waWHJMTegES-85oK3p9Wnve9uXA6wMuBz1L3aRTeUgVXQTt2veLdR63CjWiQxIqgYnB0MYvgzQspqcMlA32sPYUyKC0IwFhP4_j9wG8boy-cU4ZRwUhhZqHePUlhyzoRoC9TsobXuQTlvQxnNrMFDmTB4sK48X2BJJUUMT6bzB_hyVjA486Dg7I5gA7rPmxT6Mbvg033wfA-aGFKKYP9tDiM1hUelrZrCow7hKYo3dxd-5A9pKcCHA6CT0b2N2huXjpxoMWeMFg7tuVRKfg3xuKnHe7_dS6wOSq9jsb1eEISn9LJOStT-BWK75Sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219665883</pqid></control><display><type>article</type><title>Dietary patterns in the Southampton Women's Survey</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Crozier, S.R ; Robinson, S.M ; Borland, S.E ; Inskip, H.M</creator><creatorcontrib>Crozier, S.R ; Robinson, S.M ; Borland, S.E ; Inskip, H.M ; SWS Study Group ; and the SWS Study Group</creatorcontrib><description>Objective: Dietary pattern analysis is receiving increasing attention as a means of summarizing the multidimensional nature of dietary data. This research aims to compare principal component analysis (PCA) and cluster analysis using dietary data collected from young women in the UK. Design: Diet was assessed using a 100-item interviewer-administered food frequency questionnaire. PCA and cluster analysis were used to examine dietary patterns. Setting: Southampton, UK. Subjects: A total of 6125 non-pregnant women aged 20-34 years. Results: PCA identified two important patterns: a 'prudent' diet and a 'high-energy' diet. Cluster analysis defined two clusters, a 'more healthy' and a 'less healthy' cluster. There was a strong association between the prudent diet score and the two clusters, such that the mean prudent diet score in the less healthy cluster was -0.73 standard deviations and in the more healthy cluster was +0.83 standard deviations; the difference in the high-energy diet score between the two clusters was considerably smaller. Conclusions: Both approaches revealed a similar dietary pattern. The continuous nature of the outcome of PCA was considered to be advantageous compared with the dichotomy identified using cluster analysis.</description><identifier>ISSN: 0954-3007</identifier><identifier>EISSN: 1476-5640</identifier><identifier>DOI: 10.1038/sj.ejcn.1602469</identifier><identifier>PMID: 16804555</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adult ; Biological and medical sciences ; body composition ; Clinical Nutrition ; Cluster Analysis ; cohort studies ; Comparative studies ; Cross-Sectional Studies ; Diet ; Diet - standards ; Diet - trends ; Diet Surveys ; dietary surveys ; eating habits ; Energy ; Epidemiology ; Feeding Behavior ; Feeding. Feeding behavior ; Female ; food frequency questionnaires ; Fundamental and applied biological sciences. Psychology ; health status ; hormone secretion ; Humans ; Internal Medicine ; lifestyle ; Medical research ; Medical sciences ; Medicine ; Medicine & Public Health ; Metabolic Diseases ; Nutrition Assessment ; original-article ; Pattern analysis ; physical activity ; Principal Component Analysis ; Principal components analysis ; psychosocial factors ; Public Health ; Southampton Women's Survey ; Standard deviation ; Surveys and Questionnaires ; United Kingdom ; Vertebrates: anatomy and physiology, studies on body, several organs or systems ; Women ; young adults</subject><ispartof>European journal of clinical nutrition, 2006-12, Vol.60 (12), p.1391-1399</ispartof><rights>Springer Nature Limited 2006</rights><rights>2007 INIST-CNRS</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2006</rights><rights>Nature Publishing Group 2006.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c649t-acffcb5a1f800428aef2ce394bb81de6da5771f787371c3eb616cea06f80a6863</citedby><cites>FETCH-LOGICAL-c649t-acffcb5a1f800428aef2ce394bb81de6da5771f787371c3eb616cea06f80a6863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/sj.ejcn.1602469$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/sj.ejcn.1602469$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18316554$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16804555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crozier, S.R</creatorcontrib><creatorcontrib>Robinson, S.M</creatorcontrib><creatorcontrib>Borland, S.E</creatorcontrib><creatorcontrib>Inskip, H.M</creatorcontrib><creatorcontrib>SWS Study Group</creatorcontrib><creatorcontrib>and the SWS Study Group</creatorcontrib><title>Dietary patterns in the Southampton Women's Survey</title><title>European journal of clinical nutrition</title><addtitle>Eur J Clin Nutr</addtitle><addtitle>Eur J Clin Nutr</addtitle><description>Objective: Dietary pattern analysis is receiving increasing attention as a means of summarizing the multidimensional nature of dietary data. This research aims to compare principal component analysis (PCA) and cluster analysis using dietary data collected from young women in the UK. Design: Diet was assessed using a 100-item interviewer-administered food frequency questionnaire. PCA and cluster analysis were used to examine dietary patterns. Setting: Southampton, UK. Subjects: A total of 6125 non-pregnant women aged 20-34 years. Results: PCA identified two important patterns: a 'prudent' diet and a 'high-energy' diet. Cluster analysis defined two clusters, a 'more healthy' and a 'less healthy' cluster. There was a strong association between the prudent diet score and the two clusters, such that the mean prudent diet score in the less healthy cluster was -0.73 standard deviations and in the more healthy cluster was +0.83 standard deviations; the difference in the high-energy diet score between the two clusters was considerably smaller. Conclusions: Both approaches revealed a similar dietary pattern. The continuous nature of the outcome of PCA was considered to be advantageous compared with the dichotomy identified using cluster analysis.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>body composition</subject><subject>Clinical Nutrition</subject><subject>Cluster Analysis</subject><subject>cohort studies</subject><subject>Comparative studies</subject><subject>Cross-Sectional Studies</subject><subject>Diet</subject><subject>Diet - standards</subject><subject>Diet - trends</subject><subject>Diet Surveys</subject><subject>dietary surveys</subject><subject>eating habits</subject><subject>Energy</subject><subject>Epidemiology</subject><subject>Feeding Behavior</subject><subject>Feeding. Feeding behavior</subject><subject>Female</subject><subject>food frequency questionnaires</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>health status</subject><subject>hormone secretion</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>lifestyle</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolic Diseases</subject><subject>Nutrition Assessment</subject><subject>original-article</subject><subject>Pattern analysis</subject><subject>physical activity</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>psychosocial factors</subject><subject>Public Health</subject><subject>Southampton Women's Survey</subject><subject>Standard deviation</subject><subject>Surveys and Questionnaires</subject><subject>United Kingdom</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><subject>Women</subject><subject>young adults</subject><issn>0954-3007</issn><issn>1476-5640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ks1rGzEQxZfS0rhpz721S0vT0zqSVtJKl0JIPyHQgxt6FLI8smV2JVfSBvLfV4tNnZQEHQSa33szGl5VvcZojlErztN2Dlvj55gjQrl8Us0w7XjDOEVPqxmSjDYtQt1J9SKlLUKl2JHn1QnmAlHG2Kwinx1kHW_rnc4Zok-183XeQL0IY97oYZeDr3-HAfzHVC_GeAO3L6tnVvcJXh3u0-r665dfl9-bq5_fflxeXDWGU5kbbaw1S6axFQhRIjRYYqCVdLkUeAV8pVnXYduJru2waWHJMTegES-85oK3p9Wnve9uXA6wMuBz1L3aRTeUgVXQTt2veLdR63CjWiQxIqgYnB0MYvgzQspqcMlA32sPYUyKC0IwFhP4_j9wG8boy-cU4ZRwUhhZqHePUlhyzoRoC9TsobXuQTlvQxnNrMFDmTB4sK48X2BJJUUMT6bzB_hyVjA486Dg7I5gA7rPmxT6Mbvg033wfA-aGFKKYP9tDiM1hUelrZrCow7hKYo3dxd-5A9pKcCHA6CT0b2N2huXjpxoMWeMFg7tuVRKfg3xuKnHe7_dS6wOSq9jsb1eEISn9LJOStT-BWK75Sg</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Crozier, S.R</creator><creator>Robinson, S.M</creator><creator>Borland, S.E</creator><creator>Inskip, H.M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061201</creationdate><title>Dietary patterns in the Southampton Women's Survey</title><author>Crozier, S.R ; Robinson, S.M ; Borland, S.E ; Inskip, H.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c649t-acffcb5a1f800428aef2ce394bb81de6da5771f787371c3eb616cea06f80a6863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>body composition</topic><topic>Clinical Nutrition</topic><topic>Cluster Analysis</topic><topic>cohort studies</topic><topic>Comparative studies</topic><topic>Cross-Sectional Studies</topic><topic>Diet</topic><topic>Diet - standards</topic><topic>Diet - trends</topic><topic>Diet Surveys</topic><topic>dietary surveys</topic><topic>eating habits</topic><topic>Energy</topic><topic>Epidemiology</topic><topic>Feeding Behavior</topic><topic>Feeding. Feeding behavior</topic><topic>Female</topic><topic>food frequency questionnaires</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>health status</topic><topic>hormone secretion</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>lifestyle</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolic Diseases</topic><topic>Nutrition Assessment</topic><topic>original-article</topic><topic>Pattern analysis</topic><topic>physical activity</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>psychosocial factors</topic><topic>Public Health</topic><topic>Southampton Women's Survey</topic><topic>Standard deviation</topic><topic>Surveys and Questionnaires</topic><topic>United Kingdom</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><topic>Women</topic><topic>young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crozier, S.R</creatorcontrib><creatorcontrib>Robinson, S.M</creatorcontrib><creatorcontrib>Borland, S.E</creatorcontrib><creatorcontrib>Inskip, H.M</creatorcontrib><creatorcontrib>SWS Study Group</creatorcontrib><creatorcontrib>and the SWS Study Group</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of clinical nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crozier, S.R</au><au>Robinson, S.M</au><au>Borland, S.E</au><au>Inskip, H.M</au><aucorp>SWS Study Group</aucorp><aucorp>and the SWS Study Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dietary patterns in the Southampton Women's Survey</atitle><jtitle>European journal of clinical nutrition</jtitle><stitle>Eur J Clin Nutr</stitle><addtitle>Eur J Clin Nutr</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>60</volume><issue>12</issue><spage>1391</spage><epage>1399</epage><pages>1391-1399</pages><issn>0954-3007</issn><eissn>1476-5640</eissn><abstract>Objective: Dietary pattern analysis is receiving increasing attention as a means of summarizing the multidimensional nature of dietary data. This research aims to compare principal component analysis (PCA) and cluster analysis using dietary data collected from young women in the UK. Design: Diet was assessed using a 100-item interviewer-administered food frequency questionnaire. PCA and cluster analysis were used to examine dietary patterns. Setting: Southampton, UK. Subjects: A total of 6125 non-pregnant women aged 20-34 years. Results: PCA identified two important patterns: a 'prudent' diet and a 'high-energy' diet. Cluster analysis defined two clusters, a 'more healthy' and a 'less healthy' cluster. There was a strong association between the prudent diet score and the two clusters, such that the mean prudent diet score in the less healthy cluster was -0.73 standard deviations and in the more healthy cluster was +0.83 standard deviations; the difference in the high-energy diet score between the two clusters was considerably smaller. Conclusions: Both approaches revealed a similar dietary pattern. The continuous nature of the outcome of PCA was considered to be advantageous compared with the dichotomy identified using cluster analysis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16804555</pmid><doi>10.1038/sj.ejcn.1602469</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-3007 |
ispartof | European journal of clinical nutrition, 2006-12, Vol.60 (12), p.1391-1399 |
issn | 0954-3007 1476-5640 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3091020 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adult Biological and medical sciences body composition Clinical Nutrition Cluster Analysis cohort studies Comparative studies Cross-Sectional Studies Diet Diet - standards Diet - trends Diet Surveys dietary surveys eating habits Energy Epidemiology Feeding Behavior Feeding. Feeding behavior Female food frequency questionnaires Fundamental and applied biological sciences. Psychology health status hormone secretion Humans Internal Medicine lifestyle Medical research Medical sciences Medicine Medicine & Public Health Metabolic Diseases Nutrition Assessment original-article Pattern analysis physical activity Principal Component Analysis Principal components analysis psychosocial factors Public Health Southampton Women's Survey Standard deviation Surveys and Questionnaires United Kingdom Vertebrates: anatomy and physiology, studies on body, several organs or systems Women young adults |
title | Dietary patterns in the Southampton Women's Survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dietary%20patterns%20in%20the%20Southampton%20Women's%20Survey&rft.jtitle=European%20journal%20of%20clinical%20nutrition&rft.au=Crozier,%20S.R&rft.aucorp=SWS%20Study%20Group&rft.date=2006-12-01&rft.volume=60&rft.issue=12&rft.spage=1391&rft.epage=1399&rft.pages=1391-1399&rft.issn=0954-3007&rft.eissn=1476-5640&rft_id=info:doi/10.1038/sj.ejcn.1602469&rft_dat=%3Cgale_pubme%3EA194940519%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219665883&rft_id=info:pmid/16804555&rft_galeid=A194940519&rfr_iscdi=true |